

'DRC-2013-003539"

November 19, 2013

Sent VIA OVERNIGHT DELIVERY

Mr. Rusty Lundberg Director Division of Radiation Control Utah Department of Environmental Quality 195 North 1950 West P.O. Box 144850 Salt Lake City, UT 84114-4820

Re: Transmittal of 3rd Quarter 2013 Routine Chloroform Monitoring Report UDEQ Docket No. UGW-20-01 White Mesa Uranium Mill

Dear Mr. Lundberg:

Enclosed are two copies of the White Mesa Uranium Mill Chloroform Monitoring Report for the 3rd Quarter of 2013 as required by the Notice of Violation and Groundwater Corrective Action Order, UDEQ Docket No. 100 as well as two CDs each containing a word searchable electronic copy of the report.

should have any questions regarding this report please contact me.

EX FLEIS RESOURCES (USA) INC.

y Assurance Manager

David C. Frydenlund Harold R. Roberts David E. Turk

Energy Fuels Resources (USA) Inc. 225 Union Blvd. Suite 600 Lakewood, CO, US, 80228 303 974 2140

www.energyfuels.com

November 19, 2013

Sent VIA OVERNIGHT DELIVERY

Mr. Rusty Lundberg Director Division of Radiation Control Utah Department of Environmental Quality 195 North 1950 West P.O. Box 144850 Salt Lake City, UT 84114-4820

Re: Transmittal of 3rd Quarter 2013 Routine Chloroform Monitoring Report

UDEQ Docket No. UGW-20-01 White Mesa Uranium Mill

Dear Mr. Lundberg:

Enclosed are two copies of the White Mesa Uranium Mill Chloroform Monitoring Report for the 3rd Quarter of 2013 as required by the Notice of Violation and Groundwater Corrective Action Order, UDEQ Docket No. UGW-20-01 as well as two CDs each containing a word searchable electronic copy of the report.

If you should have any questions regarding this report please contact me.

Yours very truly,

ENERGY FUELS RESOURCES (USA) INC.

Kathy Weinel

Quality Assurance Manager

CC: David C. Frydenlund

Harold R. Roberts David E. Turk Dan Hillsten Jo Ann Tischler Central Files

White Mesa Uranium Mill

Chloroform Monitoring Report

State of Utah
Notice of Violation and Groundwater Corrective Action Order UDEQ
Docket No. UGW-20-01

3rd Quarter (July through September) 2013

Prepared by:

Energy Fuels Resources (USA) Inc. 225 Union Boulevard, Suite 600 Lakewood, CO 80228

November 19, 2013

TABLE OF CONTENTS

1.0		ODUCTION	
2.0	CHLO	OROFORM MONITORING	1
2.	.1 San	aples and Measurements Taken During the Quarter	1
	2.1.1	TW4-32, TW4-33, and TW4-34	1
	2.1.2	Chloroform Monitoring	2
	2.1.3	Parameters Analyzed	3
	2.1.4	Groundwater Head Monitoring	3
2.	2 San	apling Methodology and Equipment and Decontamination Procedures	3
	2.2.1	Well Purging and Depth to Groundwater	4
	2.2.2	Sample Collection	5
2.		d Data	
2.	4 Dep	oth to Groundwater Data and Water Table Contour Map	6
2.	5 Lab	oratory Results	6
	2.5.1	Copy of Laboratory Results	6
	2.5.2	Regulatory Framework	
3.0	QUAI	LITY ASSURANCE AND DATA VALIDATION	6
3.		d QC Samples	
3.	2 Adh	nerence to Mill Sampling SOPs	7
3.		alyte Completeness Review	
3.	4 Data	a Validation	
	3.4.1	Field Data QA/QC Evaluation	8
	3.4.2	Holding Time Evaluation	
	3.4.3	Receipt Temperature Evaluation	
	3.4.4	Analytical Method Checklist	9
	3.4.5	Reporting Limit Evaluation	9
	3.4.6	Receipt pH Evaluation1	0
	3.4.7	Trip Blank Evaluation1	0
	3.4.8	QA/QC Evaluation for Sample Duplicates	0
	3.4.9	Rinsate Sample Check	
	3.4.10	Other Laboratory QA/QC	0
	3.4.11 Re	ejected Data1	1
4.0		RPRETATION OF DATA1	
4.	1 Inte	rpretation of Groundwater Levels, Gradients and Flow Directions 1	2
	4.1.1	Current Site Groundwater Contour Map 1	2
	4.1.2	Comparison of Current Groundwater Contour Maps to Groundwater	
		Contour Maps for Previous Quarter 1	5
	4.1.3	Hydrographs1	
	4.1.4	Depth to Groundwater Measured and Groundwater Elevation 1	6
	4.1.5	Evaluation of the Effectiveness of Hydraulic Capture 1	6
4.	2 Rev	iew of Analytical Results1	8
	4.2.1	Current Chloroform Isoconcentration Map 1	8
	4.2.2	Chloroform Concentration Trend Data and Graphs 1	8
	4.2.3	Interpretation of Analytical Data	8
	4.2.4	TW4-272	0

5.0	LONG TERM PUMP TEST AT MW-4, MW-26, TW4-19, TW4-20, AND)
	TW4-4 OPERATIONS REPORT	21
5.1	Introduction	21
5.2	Pump Test Data Collection	21
5.3	Water Level Measurements	22
5.4		
5.	.4.1 Weather Event of September 18, 2013	22
5.	.4.2 TW4-20 and TW4-24	23
5.5		
5.6		
5.7	Conditions That May Affect Water Levels in Piezometers	
6.0	CORRECTIVE ACTION REPORT	
6.1	Assessment of Previous Quarter's Corrective Actions	
7.0	CONCLUSIONS AND RECOMMENDATIONS	23
8.0	ELECTRONIC DATA FILES AND FORMAT	
9.0	SIGNATURE AND CERTIFICATION	27
	LIST OF TABLES	
Table	Summary of Well Sampling for the Period	
Table 2	2 Mass of Chloroform Removed Per Well Per Quarter	
Table :	Chloroform Pumping Rates and Volumes	

INDEX OF TABS

- Tab A Site Plan and Perched Well Locations White Mesa Site
- Tab B Order of Sampling and Field Data Worksheets
- Tab C Weekly and Monthly Depth to Water Data
- Tab D Kriged Current Quarter Groundwater Contour Map, Capture Zone Map, Capture Zone Details Map, and Depth to Water Data Table
- Tab E Kriged Previous Quarter Groundwater Contour Map
- Tab F Hydrographs of Groundwater Elevations Over Time for Chloroform Monitoring Wells
- Tab G Depths to Groundwater and Elevations Over Time for Monitoring Wells
- Tab H Laboratory Analytical Reports
- Tab I Quality Assurance and Data Validation Tables
 - I-1 Field Data QA/QC Evaluation
 - I-2 Holding Time Evaluation
 - I-3 Receipt Temperature Check
 - I-4 Analytical Method Check
 - I-5 Reporting Limit Evaluation
 - I-6 Trip Blank Evaluation
 - I-7 QA/QC Evaluation for Sample Duplicates
 - I-8 QC Control Limits for Analyses and Blanks
 - I-9 Rinsate Evaluation
- Tab J Kriged Current Quarter Chloroform Isoconcentration Map
- Tab K Analyte Concentration Data Over Time
- Tab L Chloroform Concentration Trend Graphs
- Tab M CSV Transmittal Letter

1.0 INTRODUCTION

The presence of chloroform was initially identified in groundwater at the White Mesa Mill (the "Mill") as a result of split sampling performed in May 1999. The discovery resulted in the issuance of State of Utah Notice of Violation ("NOV") and Groundwater Corrective Action Order ("CAO") State of Utah Department of Environmental Quality ("UDEQ") Docket No. UGW-20-01, which required that Energy Fuels Resources (USA) Inc. ("EFRI") submit a Contamination Investigation Plan and Report pursuant to the provisions of UAC R317-6-6.15(D).

The frequency of chloroform sampling, which was initially performed on a monthly basis, was modified on November 8, 2003. Since that time all chloroform contaminant investigation wells have been sampled on a quarterly basis.

This is the Quarterly Chloroform Monitoring Report for the third quarter of 2013 as required under the NOV and CAO. This Report also includes the Operations Report for the Long Term Pump Test at MW-4, TW4-19, MW-26, TW4-20, and TW4-4 for the quarter.

2.0 CHLOROFORM MONITORING

2.1 Samples and Measurements Taken During the Quarter

A map showing the location of all groundwater monitoring wells, piezometers, existing wells, temporary chloroform contaminant investigation wells and temporary nitrate investigation wells is attached under Tab A. Chloroform samples and measurements taken during this reporting period are discussed in the remainder of this section.

2.1.1 TW4-32, TW4-33, and TW4-34

Installation of four new perched groundwater monitoring wells, TW4-28, TW4-29, TW4-30, and TW4-31 was completed on March 6, 2013 as required by the February 14, 2013 DRC Confirmatory Action Letter. TW4-28, TW4-29, TW4-30, and TW4-31 were installed to provide additional information regarding the nitrate concentrations in TW4-12 and TW4-27 which have exceeded the State of Utah groundwater quality standard of 10 mg/L. Pursuant to the agreements made with UDEQ, as documented in correspondence from UDEQ dated February 14, 2013, TW4-28, TW4-29, TW4-30, and TW4-31 were installed, developed, hydraulically tested, and sampled by the end of the second quarter 2013. TW4-28, TW4-29, TW4-30, and TW4-31 were also sampled during the regularly scheduled third quarter sampling event and the data are included in this report.

The second quarter 2013 data for TW4-28, TW4-29, TW4-30, and TW4-31 indicate that nitrate results in TW4-29, TW4-30, and TW4-31 were all below the State of Utah groundwater quality standard of 10 mg/L. However, TW4-29 had a chloroform result of 242 ug/L. A repeat sampling of TW4-29 for confirmation produced a result of 262 ug/L, indicating that the chloroform contamination does not appear to be bounded in the vicinity of TW4-29. The repeat sampling data were included in the second quarter 2013 report. The nitrate result in TW4-28 of

14.9 mg/L was above the nitrate standard of 10 mg/L, indicating that nitrate contamination is not bounded downgradient (southeast) of TW4-28. Based on the second quarter 2013 results for TW4-28, TW4-29, TW4-30, and TW4-31, and as discussed with UDEQ via telephone on July 25, 2013 and approved by UDEQ via letter dated August 2, 2013, EFRI added one additional monitoring well in the vicinity of TW4-28 and two additional monitoring wells in the vicinity of TW4-29. Installation of three new perched groundwater monitoring wells, TW4-32, TW4-33, and TW4-34 was completed the week of September 9, 2013 as discussed with UDEQ via telephone on July 25, 2013 and approved by UDEQ via letter dated August 2, 2013.

The DRC letter of February 14, 2013 required that a separate Contamination Investigation Report ("CIR") be prepared and submitted within 60 days of receipt of the analytical data for TW4-28, TW4-29, TW4-30, and TW4-31. Based on the second quarter 2013 data, as agreed to by UDEQ in the July 25, 2013 telephone call, it was considered premature to prepare a CIR based on the second quarter 2013 information only. As discussed, EFRI will collect hydraulic and contaminant concentration data from TW4-32, TW4-33, and TW4-34 in order to understand the dynamics of the chloroform contamination in the vicinity of TW4-29 and the nitrate contamination in the vicinity of TW4-28. Pursuant to the August 2, 2013 DRC letter, EFRI will sample the three new wells in the fourth quarter of 2013 and prepare a CIR within 60 days of receipt of the analytical data for the fourth quarter 2013.

2.1.2 Chloroform Monitoring

Quarterly sampling for chloroform monitoring parameters is currently required in the following wells:

TW4-1	TW4-10	TW4-21	TW4-28
TW4-2	TW4-11	TW4-22	TW4-29
TW4-3	TW4-12	TW4-23	TW4-30
TW4-4	TW4-13	TW4-24	TW4-31
TW4-5	TW4-14	TW4-25	TW4-32*
TW4-6	TW4-16	MW-4	TW4-33*
TW4-7	TW4-18	MW-26 (formerly TW4-15)	TW4-34*
TW4-8	TW4-19	MW-32 (formerly TW4-17)	
TW4-9	TW4-20	TW4-26	
		TW4-27	

^{*} Commencing in the fourth quarter 2013.

Table 1 provides an overview of all wells sampled during the quarter, along with the date samples were collected from each well, and the date(s) which analytical data were received from the contract laboratory. Table 1 also identifies equipment rinsate samples collected, as well as sample numbers associated with the deionized field blank ("DIFB") and any required duplicates.

As indicated in Table 1, chloroform monitoring was performed in all of the required chloroform monitoring wells.

2.1.3 Parameters Analyzed

Wells sampled during this reporting period were analyzed for the following constituents:

- Chloroform
- Chloromethane
- Carbon tetrachloride
- Methylene chloride
- Chloride
- Nitrate plus Nitrite as Nitrogen

Use of analytical methods is consistent with the requirements of the Chloroform Investigation Monitoring Quality Assurance Program (the "Chloroform QAP") attached as Appendix A to the White Mesa Uranium Mill Groundwater Monitoring QAP Revision 7.2, dated June 6, 2012.

2.1.4 Groundwater Head Monitoring

Depth to groundwater was measured in the following wells and/or piezometers, pursuant to Part I.E.3 of the Groundwater Discharge Permit (the "GWDP"):

- The quarterly groundwater compliance monitoring wells
- Existing monitoring well MW-4 and all of the temporary chloroform investigation wells
- Piezometers P-1, P-2, P-3, P-4 and P-5
- MW-20 and MW-22
- Nitrate monitoring wells
- The DR piezometers which were installed during the Southwest Hydrologic Investigation

In addition to the above, depth to water measurements are routinely observed in conjunction with sampling events for all wells sampled during quarterly and accelerated efforts, regardless of the sampling purpose.

Weekly and monthly depth to groundwater measurements were taken in the chloroform pumping wells MW-4, MW-26, TW4-19, TW4-20, and TW4-4, and the nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2. In addition, monthly water level measurements were taken in non-pumping wells MW-27, MW-30, MW-31, TW4-21, TWN-1, TWN-3, TWN-4, TWN-7, and TWN-18 as required by the Nitrate Corrective Action Plan ("CAP"), dated May 7, 2012.

2.2 Sampling Methodology and Equipment and Decontamination Procedures

EFRI completed, and transmitted to UDEQ on May 25, 2006, a revised QAP for sampling under the Mill's Groundwater Discharge Permit ("GWDP"). While the water sampling conducted for chloroform investigation purposes has conformed to the general principles set out in the QAP, some of the requirements in the QAP were not fully implemented prior to UDEQ's approval, for reasons set out in correspondence to UDEQ dated December 8, 2006. Subsequent to the delivery of the December 8, 2006 letter, EFRI discussed the issues brought forward in the letter with UDEQ and has received correspondence from UDEQ about those issues. In response to UDEQ's

letter and subsequent discussions with UDEQ, EFRI has incorporated changes in chloroform Quality Assurance ("QA") procedures in the form of the Chloroform QAP. The Chloroform QAP describes the requirements of the chloroform investigation program and identifies where they differ from the Groundwater QAP. On June 20, 2009 the Chloroform QAP was modified to require that the quarterly chloroform reports include additional items specific to EFRI's ongoing pump testing and chloroform capture efforts. The Groundwater QAP as well as the Chloroform QAP were revised again on June 6, 2012. The revised Groundwater QAP and Chloroform QAP, Revision 7.2 were approved by DRC on June 7, 2012.

The sampling methodology, equipment and decontamination procedures that were used for the chloroform contaminant investigation, as summarized below, are consistent with the approved QAP Revision 7.2 and the Chloroform QAP.

2.2.1 Well Purging and Depth to Groundwater

The wells are purged prior to sampling by means of a portable pump. A list of the wells in order of increasing chloroform concentration is generated quarterly. The order for purging is thus established. The list is included with the Field Data Worksheets under Tab B. Mill personnel start purging with all of the non-detect wells and then move to the wells with detectable chloroform concentrations staring with the lowest concentration and proceeding to the wells with highest concentration.

Samples are collected by means of disposable bailer(s) the day following the purging. The disposable bailer is used only for the collection of a sample from an individual well and disposed subsequent to the sampling. As noted in the approved QAP, Revision 7.2, sampling will generally follow the same order as purging; however; the sampling order may deviate slightly from the generated list. This practice does not affect the samples for these reasons: any wells sampled in slightly different order either have dedicated pumps or are sampled via a disposable bailer. This practice does not affect the quality or usability of the data as there will be no cross-contamination resulting from sampling order.

Before leaving the Mill office, the portable pump and hose are rinsed with deionized ("DI") water. Where portable (non-dedicated) sampling equipment is used, a rinsate sample will be collected at a frequency of one rinsate sample per 20 field samples. Well depth measurements are taken and the one casing volume is calculated for those wells which do not have a dedicated pump as described in Attachment 2-3 of the QAP. Purging is completed to remove stagnant water from the casing and to assure that representative samples of formation water are collected for analysis. There are three purging strategies that will be used to remove stagnant water from the casing during groundwater sampling at the Mill. The three strategies are as follows:

- 1. Purging three well casing volumes with a single measurement of field parameters specific conductivity, turbidity, pH, redox potential, and water temperature
- 2. Purging two casing volumes with stable field parameters for specific conductivity, turbidity, pH, redox potential, and water temperature (within 10% Relative Percent Difference ["RPD"])
- 3. Purging a well to dryness and stability (within 10% RPD) of field parameters for pH, specific conductivity, and water temperature only after recovery

If the well has a dedicated pump, it is pumped on a set schedule per the remediation plan and is considered sufficiently evacuated to immediately collect a sample; however, if a pumping well has been out of service for 48 hours or more, EFRI will follow the purging requirements outlined in Attachment 2-3 of the QAP. The dedicated pump is used to collect parameters and to collect the samples as described below. If the well does not have a dedicated pump, a Grundfos pump (9 - 10 gpm pump) is then lowered to the screened interval in the well and purging is started. The purge rate is measured for the well by using a calibrated 5 gallon bucket. This purging process is repeated at each well location moving from least contaminated to the most contaminated well. All wells are capped and secured prior to leaving the sampling location.

Wells with dedicated pumps are sampled when the pump is in the pumping mode. If the pump is not pumping at the time of sampling, it is manually switched on by the Mill Personnel. The well is pumped for approximately 5 to 10 minutes prior to the collection of the field parameters. Per the approved QAP, one set of parameters is collected. Samples are collected following the measurement of one set of field parameters. The pump is turned off and allowed to resume its timed schedule.

2.2.2 Sample Collection

Prior to sampling, a cooler with ice is prepared. The trip blank is also gathered at that time (the trip blank for these events is provided by the Analytical Laboratory). Once Mill Personnel arrive at the well sites, labels are filled out for the various samples to be collected. All personnel involved with the collection of water and samples are then outfitted with disposable gloves. Chloroform investigation samples are collected by means of disposable bailers.

Mill personnel use a disposable bailer to sample each well that does not have a dedicated pump. The bailer is attached to a reel of approximately 150 feet of nylon rope and then lowered into the well. After coming into contact with the water, the bailer is allowed to sink into the water in order to fill. Once full, the bailer is reeled up out of the well and the sample bottles are filled as follows:

- Volatile Organic Compound ("VOC") samples are collected first. This sample consists of three 40 ml vials provided by the Analytical Laboratory. The VOC sample is not filtered and is preserved with HCl;
- A sample for nitrate/nitrite is then collected. This sample consists of one 250 ml. bottle which is provided by the Analytical Laboratory. The nitrate/nitrite sample is not filtered and is preserved with H₂SO₄;
- A sample for chloride is then collected. This sample consists of one 500 ml. bottle which
 is provided by the Analytical Laboratory. The chloride sample is not filtered and is not
 chemically preserved.

After the samples have been collected for a particular well, the bailer is disposed of and the samples are placed into the cooler that contains ice. The well is then recapped and Mill personnel proceed to the next well.

2.3 Field Data

Attached under Tab B are copies of all Field Data Worksheets that were completed during the quarter for the chloroform contaminant investigation monitoring wells identified in paragraph 2.1.1 above, and Table 1.

2.4 Depth to Groundwater Data and Water Table Contour Map

Attached under Tab C are copies of the Depth to Water Sheets for the weekly monitoring of MW-4, MW-26, TW4-19, TW4-20, TW4-4, TW4-22, TW4-24, TW4-25, and TWN-2 as well as the monthly depth to groundwater data for chloroform contaminant investigation wells and the non-pumped wells measured during the quarter. Depth to groundwater measurements which were utilized for groundwater contours are included on the Quarterly Depth to Water Worksheet at Tab D of this report, along with the kriged groundwater contour map for the current quarter generated from this data. A copy of the kriged groundwater contour map generated from the previous quarter's data is provided under Tab E.

2.5 Laboratory Results

2.5.1 Copy of Laboratory Results

All analytical results were provided by American West Analytical Laboratories ("AWAL"). Table 1 lists the dates when analytical results were reported to the QA Manager for each sample.

Results from analysis of samples collected for this quarter's chloroform contaminant investigation are provided under Tab H of this Report. Also included under Tab H are the results of analyses for duplicate samples, the DIFB, and rinsate samples for this sampling effort, as identified in Table 1, as well as results for trip blank analyses required by the Chloroform QAP.

2.5.2 Regulatory Framework

As discussed in Section 1.0, above, the NOV and requirements of the CAO triggered a series of actions on EFRI's part. In addition to the monitoring program, EFRI has equipped nine wells with pumps to recover impacted groundwater, and has initiated recovery of chloroform from the perched zone.

Sections 4 and 5, below, interpret the groundwater level and flow information, contaminant analytical results, and pump test data to assess effectiveness of EFRI's chloroform capture program.

3.0 QUALITY ASSURANCE AND DATA VALIDATION

The QA Manager performed a QA/Quality Control ("QC") review to confirm compliance of the monitoring program with requirements of the QAP. As required in the QAP, data QA includes preparation and analysis of QC samples in the field, review of field procedures, an analyte completeness review, and QC review of laboratory methods and data. Identification of field QC

samples collected and analyzed is provided in Section 3.1. Discussion of adherence to Mill sampling Standard Operating Procedures ("SOPs") is provided in Section 3.2. Analytical completeness review results are provided in Section 3.3. The steps and tests applied to check laboratory data QA/QC are discussed in Sections 3.4.4 through 3.4.9 below.

The analytical laboratory has provided summary reports of the analytical QA/QC measurements necessary to maintain conformance with National Environmental Laboratory Accreditation Conference ("NELAC") certification and reporting protocol. The Analytical Laboratory QA/QC Summary Reports, including copies of the Mill's Chain of Custody and Analytical Request Record forms for each set of Analytical Results, follow the analytical results under Tab H. Results of review of the laboratory QA/QC information are provided under Tab I and are discussed in Section 3.4, below.

3.1 Field QC Samples

The following QC samples were generated by Mill personnel and submitted to the analytical laboratory in order to assess the quality of data resulting from the field sampling program.

Field QC samples for the chloroform investigation program consist of one field duplicate sample for each 20 samples, a trip blank for each shipped cooler which contains VOCs, one DIFB and rinsate samples.

During this quarter, two duplicate samples were collected as indicated in Table 1. The duplicates were sent blind to the analytical laboratory and analyzed for the same parameters as the chloroform wells.

Four trip blanks were provided by American West Analytical Laboratories ("AWAL") and returned with the quarterly chloroform monitoring samples.

Two rinsate blank samples were collected at a frequency of one rinsate per twenty samples per QAP Section 4.3.2 and as indicated on Table 1. Rinsate samples were labeled with the name of the subsequently purged well with a terminal letter "R" added (e.g. TW4-7R). The results of these analyses are included with the routine analyses under Tab H.

In addition, one DIFB, while not required by the Chloroform QAP, was collected and analyzed for the same constituents as the well samples and rinsate blank samples.

3.2 Adherence to Mill Sampling SOPs

The QA Manager review of Mill Personnel's adherence to the existing SOPs, confirmed that the QA/QC requirements established in the QAP and Chloroform QAP were met.

3.3 Analyte Completeness Review

All analyses required by the CAO for chloroform monitoring for the period were performed.

3.4 Data Validation

The QAP and GWDP identify the data validation steps and data QC checks required for the chloroform monitoring program. Consistent with these requirements, the QA Manager performed the following evaluations: a field data QA/QC evaluation, a holding time check, a receipt temperature check, an analytical method check, a reporting limit evaluation, a trip blank check, a QA/QC evaluation of sample duplicates, a QC Control Limit check for analyses and blanks including the DIFB and a rinsate sample check. Each evaluation is discussed in the following sections. Data check tables indicating the results of each test are provided under Tab I.

3.4.1 Field Data QA/QC Evaluation

The QA Manager performs a review of all field recorded parameters to assess their adherence with QAP requirements. The assessment involved review of two sources of information: the Field Data Sheets and the Quarterly Depth to Water summary sheet. Review of the Field Data Sheets addresses well purging volumes and measurement of field parameters based on the requirements discussed in section 2.2.1 above. The purging technique employed determines the requirements for field parameter measurement and whether stability criteria are applied. Review of the Depth to Water data confirms that all depth measurements used for development of groundwater contour maps were conducted within a five-day period as indicated by the measurement dates in the summary sheet under Tab D. The results of this quarter's review of field data are provided under Tab I.

Based upon the review of the field data sheets, all wells conformed to the QAP purging and field measurement requirements. A summary of the purging techniques employed and field measurements taken is described below:

Purging Two Casing Volumes with Stable Field Parameters (within 10% RPD)

Wells TW4-01, TW4-05, TW4-08, TW4-09, TW4-11, TW4-12, TW4-16, MW-32, TW4-18, TW4-21, TW4-23, and TW4-28 were sampled after two casing volumes were removed. Field parameters pH, specific conductivity, turbidity, water temperature, and redox potential were measured during purging. All field parameters for this requirement were stable within 10% RPD.

Purging a Well to Dryness and Stability of a Limited List of Field Parameters

Wells TW4-2, TW4-3, TW4-6, TW4-07, TW4-10, TW4-13, TW4-14, TW4-26, TW4-27, TW4-29, TW4-29 resample, TW4-30, and TW4-31 were pumped to dryness before two casing volumes were evacuated. After well recovery, one set of measurements were taken, the samples were collected, and another set of measurements were taken. Stabilization of pH, conductivity and temperature are required within 10% RPD under the QAP, Revision 7.2. The QAP requirements for stabilization were met.

Continuously Pumped Wells

Wells MW-04, TW4-04, MW-26, TW4-19, TW4-20, TW4-22, TW4-24, and TW4-25 are continuously pumped wells. These wells are pumped on a set schedule per the remediation plan and are considered sufficiently evacuated to immediately collect a sample.

During review of the field data sheets, the QA Manager confirmed that sampling personnel consistently recorded depth to water to the nearest 0.01 foot.

The review of the field sheets for compliance with QAP, Revision 7.2 requirements resulted in the observations noted below. The QAP requirements in Attachment 2-3 specifically state that field parameters must be stabilized to within 10% over at least 2 consecutive measurements for wells purged to 2 casing volumes or purged to dryness. The QAP Attachment 2-3 states that turbidity should be less than 5 NTU prior to sampling unless the well is characterized by water that has a higher turbidity. The QAP Attachment 2-3 does not require that turbidity measurements be less than 5 NTU prior to sampling. As such, the noted observations below regarding turbidity measurements greater than 5 NTU are included for information purposes only.

Wells TW4-01, TW4-05, TW4-08, TW4-09, TW4-11, TW4-16, MW-32, TW4-18, TW4-21, TW4-23 and TW4-28 exceeded the QAP's 5 NTU goal. EFRI's letter to DRC of March 26, 2010 discusses further why turbidity does not appear to be an appropriate parameter for assessing well stabilization. In response to DRC's subsequent correspondence dated June 1, 2010 and June 24, 2010, EFRI has completed a monitoring well redevelopment program. The redevelopment report was submitted to DRC on September 30, 2011. DRC responded to the redevelopment report via letter on November 15, 2012. Per the DRC letter dated November 15, 2012, the field data generated this quarter are compliant with the turbidity requirements of the approved QAP.

3.4.2 Holding Time Evaluation

QAP Table 1 identifies the method holding times for each suite of parameters. Sample holding time checks are provided in Tab I. All samples were received and analyzed within the required holding times.

3.4.3 Receipt Temperature Evaluation

Chain of Custody sheets were reviewed to confirm compliance with the QAP requirement which specifies that samples be received at 6°C or lower. Sample temperatures checks are provided in Tab I. All samples were received within the required temperature limit.

3.4.4 Analytical Method Checklist

All analytical methods reported by the laboratory were checked against the required methods enumerated in the Chloroform QAP. Analytical method checks are provided in Tab I. All methods were consistent with the requirements of the Chloroform QAP.

3.4.5 Reporting Limit Evaluation

All analytical method reporting limits reported by the laboratory were checked against the reporting limits enumerated in the Chloroform QAP. Reporting Limit Checks are provided under Tab I. All analytes were measured and reported to the required reporting limits; several sets of sample results had the reporting limit raised for at least one analyte due to matrix interference and/or sample dilution. In all cases the reported value for the analyte was higher than the increased detection limit.

3.4.6 Receipt pH Evaluation

Appendix A of the QAP states that all volatile samples are required to be preserved and arrive at the laboratory with a pH less than 2. A review of the laboratory data revealed that all volatile samples were received at the laboratory with a pH less than 2.

3.4.7 Trip Blank Evaluation

Trip blank results were reviewed to identify any VOC contamination resulting from transport of the samples. Trip blank checks are provided in Tab I. All trip blank results were less than the reporting limit for all VOCs.

3.4.8 QA/QC Evaluation for Sample Duplicates

Section 9.1.4 a) of the QAP states that RPDs will be calculated for the comparison of duplicate and original field samples. The QAP acceptance limits for RPDs between the duplicate and original field sample is less than or equal to 20% unless the measured results are less than 5 times the required detection limit. This standard is based on the EPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994, 9240.1-05-01 as cited in the QAP. The RPDs are calculated for all duplicate pairs for all analytes regardless of whether or not the reported concentrations are greater than 5 times the required detection limits; however, data will be considered noncompliant only when the results are greater than 5 times the reported detection limit and the RPD is greater than 20%. The additional duplicate information is provided for information purposes.

All analytical results for the sample/duplicate pairs were within the 20% acceptance limits. The results of the RPD test are provided in Tab I.

3.4.9 Rinsate Sample Check

Rinsate blank sample checks are provided in Tab I. The rinsate blank sample concentration levels were compared to the QAP requirements i.e., that rinsate sample concentrations be one order of magnitude lower than that of the actual well. All of the rinsate blank sample results were nondetect for this quarter.

While not required by the Chloroform QAP, DIFB samples are collected to analyze the quality of the DI water system at the Mill, which is also used to collect rinsate samples. A review of the analytical results reported for the DIFB sample indicated the sample results were nondetect.

3.4.10 Other Laboratory QA/QC

Section 9.2 of the QAP requires that the laboratory's QA/QC Manager check the following items in developing data reports: (1) sample preparation information is correct and complete, (2) analysis information is correct and complete, (3) appropriate analytical laboratory procedures are followed, (4) analytical results are correct and complete, (5) QC samples are within established control limits, (6) blanks are within QC limits, (7) special sample preparation and analytical requirements have been met, and (8) documentation is complete. In addition to other laboratory checks described above, EFRI's QA Manager rechecks QC samples and blanks (items (5) and

(6)) to confirm that the percent recovery for spikes and the relative percent difference for spike duplicates are within the method-specified acceptance limits, or that the case narrative sufficiently explains any deviation from these limits. Results of this quantitative check are provided in Tab I.

All lab QA/QC results met these specified acceptance limits except as noted below.

The QAP Section 8.1.2 requires that a Matrix Spike/Matrix Spike Duplicate ("MS/MSD") pair be analyzed with each analytical batch. The QAP does not specify acceptance limits for the MS/MSD pair, and the QAP does not specify that the MS/MSD pair be prepared on EFRI samples only. Acceptance limits for MS/MSDs are set by the laboratories. The review of the information provided by the laboratories in the data packages verified that the QAP requirement to analyze an MS/MSD pair with each analytical batch was met. While the QAP does not require it, the recoveries were reviewed for compliance with the laboratory established acceptance limits. The QAP does not require this level of review, and the results of this review are provided for information only.

The information from the Laboratory QA/QC Summary Reports indicates that the MS/MSDs recoveries and the associated RPDs for all samples were within acceptable laboratory limits for all regulated compounds except as indicated in Tab I. The data recoveries which are outside the laboratory established acceptance limits do not affect the quality or usability of the data because the recoveries are above the acceptance limits and are indicative of matrix interference. Matrix interferences are applicable to the individual sample results only. The requirement in the QAP to analyze a MS/MSD pair with each analytical batch was met and as such the data are compliant with the QAP.

The QAP specifies that surrogate compounds shall be employed for all organic analyses, but the QAP does not specify acceptance limits for surrogate recoveries. The analytical data associated with the routine quarterly sampling met the requirement specified in the QAP. The information from the Laboratory QA/QC Summary Reports indicates that the surrogate recoveries for all quarterly chloroform samples were within acceptable laboratory limits for all surrogate compounds. The requirement in the QAP to analyze a surrogate compounds was met and the data are compliant with the QAP. Furthermore, there are no QAP requirements for surrogate recoveries.

The information from the Laboratory QA/QC Summary Reports indicates that all LCS recoveries were within acceptable laboratory limits for all LCS compounds.

3.4.11 Rejected Data

The QA Manager performs a reasonableness check of analytical data upon receipt. This review compares current analytical results against historic results. During this review the QA Manager noted that the results from newly installed TW4-29 did not agree with the previous two sample results. The chloroform results for the June and July 2013 samples from TW4-29 were 242 ug/L to 262 ug/L respectively. The chloroform result from the September 12, 2013 sample was reported as non-detect. Additionally, the chloride and nitrate data were not in agreement and were, in fact, orders of magnitude different from the previous results. TW4-29 was resampled on

September 26, 2013, within the quarter, and expedited turnaround of analyses completed by the laboratory so that results would be available in time for this report. The resample data are in agreement with the June and July 2013 results. As a result, the QA Manager has rejected from use the data resulting from the September 12, 2013 sampling event. The data are included for information purposes but have been removed from any future use or data management activities. The QA Manager determined that a sample switch in the analytical laboratory is the cause of the anomalous results. The anomalous data are not the result of a field sample switch because there are no other data from the September 12, 2013 sampling event that are anomalous when compared to historic concentrations, hence the switch must have occurred in the laboratory. The laboratory has been alerted and has started an internal QA investigation into their sample custody processes.

4.0 INTERPRETATION OF DATA

4.1 Interpretation of Groundwater Levels, Gradients and Flow Directions.

4.1.1 Current Site Groundwater Contour Map

The water level contour maps (See Tab D) indicate that perched water flow ranges from generally southwesterly beneath the Mill site and tailings cells to generally southerly along the eastern and western margins of White Mesa. Water level patterns northeast of the Mill site appear slightly different this quarter compared to last quarter due to the reduced number of water level measurements resulting from abandonment of several of the TWN-series wells.

Perched water mounding associated with the wildlife ponds locally changes the generally southerly perched water flow patterns. For example, northeast of the Mill site, mounding associated with wildlife ponds results in locally northerly flow near PIEZ-1. The impact of the mounding associated with the northern ponds, to which water has not been delivered since March 2012, is diminishing and is expected to continue to diminish as the mound decays due to reduced recharge.

Not only has recharge from the wildlife ponds impacted perched water elevations and flow directions at the site, but the cessation of water delivery to the northern ponds, which are generally upgradient of the nitrate and chloroform plumes at the site, has resulted in changing conditions that are expected to impact constituent concentrations and migration rates within the plumes. Specifically, past recharge from the ponds has helped limit many constituent concentrations within the plumes by dilution while the associated groundwater mounding has increased hydraulic gradients and contributed to plume migration. Since use of the northern wildlife ponds ceased in March 2012, the reduction in recharge and decay of the associated groundwater mound are expected to increase many constituent concentrations within the plumes while reducing hydraulic gradients and acting to reduce rates of plume migration. EFRI and its consultants have raised the issues and potential effects associated with cessation of water delivery to the northern wildlife ponds during discussions with DRC in March 2012 and May 2013.

The impacts associated with cessation of water delivery to the northern ponds are expected to propagate downgradient (south and southwest) over time. Wells close to the ponds are generally

expected to be impacted sooner than wells farther downgradient of the ponds. Therefore, constituent concentrations are generally expected to increase in downgradient wells close to the ponds before increases are detected in wells farther downgradient of the ponds. Although such increases are anticipated to result from reduced dilution, the magnitude and timing of the increases are difficult to predict due to the complex permeability distribution at the site and factors such as pumping and the rate of decay of the groundwater mound. The potential exists for some wells completed in higher permeability materials to be impacted sooner than some wells completed in lower permeability materials even though the wells completed in lower permeability materials may be closer to the ponds.

Localized increases in concentrations of constituents such as nitrate and chloride within and near the nitrate plume may occur even when the nitrate plume is under control based on the Nitrate CAP requirements. Ongoing mechanisms that can be expected to increase the concentrations of nitrate and chloride locally as a result of reduced wildlife pond recharge include but are not limited to:

- 1) Reduced dilution the mixing of low constituent concentration pond recharge into existing perched groundwater will be reduced over time.
- 2) Reduced saturated thicknesses dewatering of higher permeability layers receiving primarily low constituent concentration pond water will result in wells intercepting these layers receiving a smaller proportion of the low constituent concentration water.

The combined impact of the above two mechanisms may be especially evident at chloroform pumping wells MW-4, MW-26, TW4-4, TW4-19, and TW4-20; nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2; and non-pumped wells adjacent to the pumped wells. The overall impact is expected to be generally higher constituent concentrations in these wells over time until mass reduction resulting from pumping and natural attenuation eventually reduce concentrations. Short-term changes in concentrations at pumping wells and wells adjacent to pumping wells are also expected to result from changes in pumping conditions.

In addition to changes in the flow regime caused by wildlife pond recharge, perched flow directions are also locally influenced by operation of the chloroform and nitrate pumping wells. Well defined cones of depression are evident in the vicinity of all chloroform pumping wells except TW4-4, which began pumping in the first quarter of 2010. Although operation of chloroform pumping well TW4-4 has depressed the water table in the vicinity of TW4-4, a welldefined cone of depression is not clearly evident. The lack of a well-defined cone of depression near TW4-4 likely results from 1) variable permeability conditions in the vicinity of TW4-4, and 2) persistent relatively low water levels at adjacent well TW4-14. Well-defined cones of depression are also not clearly evident near nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2, which started pumping during the first quarter of 2013, most likely because they have not had sufficient time to develop. Water level patterns near these wells are expected to be influenced by the presence of, and the decay of, the groundwater mound associated with the northern wildlife ponds, and by the persistently low water level elevation at TWN-7. Although operation of the nitrate pumping system has not yet produced a well-defined impact on water levels, continued operation of the system is expected to produce a well-defined capture zone that will merge with and enhance the capture associated with the chloroform pumping system. The

actual impact of nitrate pumping on the chloroform pumping system cannot be evaluated until more data are collected as part of routine monitoring.

As discussed above, variable permeability conditions is one likely reason for the lack of a well-defined cone of depression near chloroform pumping well TW4-4. Changes in water levels at wells immediately south of TW4-4 resulting from TW4-4 pumping are expected to be muted because TW4-4 is located at a transition from relatively high to relatively low permeability conditions south (downgradient) of TW4-4. The permeability of the perched zone at TW4-6 and TW4-26 (and recently installed well TW4-29) is approximately two orders of magnitude lower than at TW4-4. Any drawdown of water levels at wells immediately south of TW4-4 resulting from TW4-4 pumping is also difficult to determine because of the general, long-term increase in water levels in this area due to recharge from the wildlife ponds.

Water levels at TW4-4 and TW4-6 increased by nearly 2.7 and 2.9 feet, respectively, between the fourth quarter of 2007 and the fourth quarter of 2009 (just prior to TW4-4 pumping) at rates of approximately 1.2 feet/year and 1.3 feet/year, respectively. However, the increase in water level at TW4-6 has been reduced since the start of pumping at TW4-4 (first quarter of 2010) to approximately 0.5 feet/year suggesting that TW4-6 is within the hydraulic influence of TW4-4. Water level elevations at these wells are eventually expected to be influenced by cessation of water delivery to the northern wildlife ponds as discussed above. Recharge from the southern wildlife pond is expected to continue to have an effect on water levels near TW4-4, but the effects related to recharge from the northern ponds is expected to diminish over time as water is no longer delivered to the northern ponds.

The lack of a well-defined cone of depression at TW4-4 is also influenced by the persistent, relatively low water level at non-pumping well TW4-14, located east of TW4-4 and TW4-6. For the current quarter, the water level at TW4-14 (approximately 5527.7 feet above mean sea level [ft amsl]) is approximately 12 feet lower than the water level at TW4-6 (approximately 5539.6 ft amsl) and 17 feet lower than at TW4-4 (approximately 5544.6 ft amsl) even though TW4-4 is pumping.

Well TW4-27 (installed south of TW4-14 in the fourth quarter of 2011) has a static water level of approximately 5527.0 ft amsl, similar to TW4-14 (approximately 5527.7 ft amsl). TW4-27 was positioned at a location considered likely to detect any chloroform present and/or to bound the chloroform plume to the southeast and east (respectively) of TW4-4 and TW4-6. As will be discussed below, groundwater data collected since installation indicates that TW4-27 does indeed bound the chloroform plume to the southeast and east of TW4-4 and TW4-6 (respectively), however chloroform exceeding 70 μ g/L was detected at recently installed temporary perched well TW4-29, located south of TW4-27, during the previous and current quarters.

Prior to the installation of TW4-27, the persistently low water level at TW4-14 was considered anomalous because it appeared to be downgradient of all three wells TW4-4, TW4-6, and TW4-26, yet chloroform was not detected at TW4-14. Chloroform had apparently migrated from TW4-4 to TW4-6 and from TW4-6 to TW4-26 which suggested that TW4-26 was actually downgradient of TW4-6, and TW4-6 was actually downgradient of TW4-4, regardless of the

flow direction implied by the low water level at TW4-14. The water level at TW4-26 (5538.9 feet amsl) is, however, lower than water levels at adjacent wells TW4-6 (5539.6 feet amsl), and TW4-23 (5543.1 feet amsl)

Hydraulic tests conducted in November, 2011 indicate that the permeability at TW4-27 is an order of magnitude lower than at TW4-6 and three orders of magnitude lower than at TW4-4. The similar water levels at TW4-14 and TW4-27, and the low permeability estimate at TW4-27 suggest that both wells are completed in materials having lower permeability than nearby wells. The low permeability condition likely reduces the rate of long-term water level increase at TW4-14 and TW4-27 compared to nearby wells, yielding water levels that appear anomalously low. This behavior is consistent with hydraulic test data collected from recently installed wells TW4-29, TW4-30, and TW4-31 last quarter which indicate that the permeability of these wells is similar to that of TW4-6 and TW4-26, but an order of magnitude higher than that of TW4-27. The low permeability at TW4-14 and TW4-27 is expected to retard the transport of chloroform to these wells (compared to nearby wells). As will be discussed in Section 4.2.3, third quarter, 2013 chloroform concentrations at TW4-26 and TW4-27 are 2.8 ug/L and non-detect, respectively and both wells are outside the chloroform plume.

Although chloroform exceeding 70 µg/L was detected at recently installed well TW4-29 (located south of TW4-27), chloroform was not detected at recently installed well TW4-30, located east of TW4-29, nor at recently installed well TW4-31, located east of TW4-27. The detection at TW4-29 suggests the possibility that chloroform migrated southeast from the vicinity of TW4-4 to TW4-29 in a direction nearly cross-gradient with respect to the direction of groundwater flow implied by the groundwater elevations. Such migration is possible because the water level at TW4-29 is lower than the water level at TW4-4 (and TW4-6). The hydraulic conductivities of TW4-29, TW4-30, and TW4-31, based on hydraulic tests during the previous quarter, are similar to those of TW4-6 and TW4-26, but two orders of magnitude lower than the conductivity of TW4-4, and an order of magnitude higher than the conductivity of TW4-27. The permeability and water level distributions are generally consistent with the apparent nearly cross-gradient migration of chloroform around the low permeability zone defined by TW4-14 and TW4-27, although the two order of magnitude decrease in permeability from TW4-4 to TW4-29 does not support a high permeability connection between TW4-4 and TW4-29. If, however, the chloroform at TW4-29 migrated from the vicinity of TW4-4, then pumping at TW4-4 is expected to influence, and eventually reduce, concentrations at TW4-29 by analogy with the water level and concentration behavior of nearby wells TW4-6 and TW4-26.

4.1.2 Comparison of Current Groundwater Contour Maps to Groundwater Contour Maps for Previous Quarter

The groundwater contour map for the Mill site for the second quarter of 2013, as submitted with the Chloroform Monitoring Report for the second quarter of 2013, is attached under Tab E.

A comparison of the water table contour maps for the current (third) quarter of 2013 to the water table contour maps for the previous quarter (second quarter of 2013) indicates similar patterns of drawdown related to operation of chloroform pumping wells MW-4, MW-26, TW4-4, TW4-19 and TW4-20. Although nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 (brought

into operation during the first quarter of 2013) are acting to change water level distributions, water levels and water level contours for the site have not changed significantly since the last quarter, except for a few locations. As discussed in Section 4.1.1, pumping at TW4-4, which began in the first quarter of 2010, has depressed the water table near TW4-4, but a well-defined cone of depression is not clearly evident, likely due to variable permeability conditions near TW4-4 and the persistently low water level at adjacent well TW4-14.

Reported decreases in water levels (increases in drawdown) of approximately 3 feet and nearly 2 feet occurred in chloroform pumping well MW-26 and nitrate pumping well TW4-25, respectively, and increases in water levels (decreases in drawdown) of approximately 2 feet occurred in chloroform pumping wells MW-4 and TW4-19, and of approximately 5 feet occurred in nitrate pumping well TW4-24. Changes in water levels at other pumping wells (chloroform pumping wells TW4-4 and TW4-20 and nitrate pumping wells TW4-22 and TWN-2) were less than 2 feet. Water level fluctuations at pumping wells typically occur in part because of fluctuations in pumping conditions just prior to and at the time the measurements are taken.

The decrease in water level (increase in drawdown) at chloroform pumping well MW-26 has slightly increased the apparent capture of this well relative to other pumping wells. Overall, the combined capture of chloroform pumping wells MW-4, MW-26, TW4-4, TW4-19, and TW4-20 is nearly the same as last quarter.

Water level decreases ranging from approximately 0.8 to 2.6 feet at Piezometers 2 and 3, and TWN-4, likely result from cessation of water delivery to the northern wildlife ponds as discussed in Section 4.1.1 and the consequent continuing decay of the associated perched water mound. The water level decrease of approximately 0.7 feet reported for TWN-1 is likely related to both decay of the perched water mound and operation of nitrate pumping well TW4-25.

At the southwest corner of the site, water level increases of nearly 4 feet occurred at MW-20 and approximately 6 feet at piezometer DR-21. Water was also reported to be present at the bottom of formerly dry piezometer DR-22.

4.1.3 Hydrographs

Attached under Tab F are hydrographs showing groundwater elevation in each chloroform contaminant investigation monitor well over time.

4.1.4 Depth to Groundwater Measured and Groundwater Elevation

Attached under Tab G are tables showing depth to groundwater measured and groundwater elevation over time for each of the wells listed in Section 2.1.1 above.

4.1.5 Evaluation of the Effectiveness of Hydraulic Capture

Perched water containing chloroform has been removed from the subsurface by operating chloroform pumping wells MW-4, MW-26, TW4-4, TW4-19, and TW4-20. The primary purpose of the pumping is to reduce total chloroform mass in the perched zone as rapidly as is practical. Pumping wells upgradient of TW4-4 were chosen because 1) they are located in areas

of the perched zone having relatively high permeability and saturated thickness, and 2) high concentrations of chloroform were detected at these locations. The relatively high transmissivity of the perched zone in the vicinity of these pumping wells results in the wells having a relatively high productivity. The combination of relatively high productivity and high chloroform concentrations allows a high rate of chloroform mass removal. TW4-4 is located in a downgradient area having relatively high chloroform concentrations but relatively small saturated thickness, and at a transition from relatively high to relatively low permeability conditions downgradient of TW4-4. As with the other chloroform pumping wells, pumping TW4-4 helps to reduce the rate of chloroform migration in downgradient portions of the plume.

The impact of chloroform pumping is indicated by the water level contour maps attached under Tabs D and E. Cones of depression are evident in the vicinity of MW-4, MW-26, TW4-19, and TW4-20 which continue to remove significant quantities of chloroform from the perched zone. The water level contour maps indicate effective capture of water containing high chloroform concentrations in the vicinities of these pumping wells. Overall, the combined capture of MW-4, MW-26, TW4-19, and TW4-20 remains about the same as last quarter, and the impact of nitrate pumping on the capture associated with chloroform pumping is not clearly evident. However, continued operation of the nitrate pumping system is expected to produce a capture zone that will merge with and enhance the capture zone associated with the chloroform pumping system. As discussed in Section 4.1.1, the drawdown associated with chloroform pumping well TW4-4 is likely less apparent due to variable permeability conditions near TW4-4 and the persistently low water level at adjacent well TW4-14.

Chloroform concentrations exceeding 70 µg/L have occurred in the past at some locations downgradient of pumping wells (for example, at TW4-6, located immediately south of TW4-4), where the lower permeability and relatively small saturated thickness of the perched zone significantly limits the rate at which chloroform mass can be removed by pumping. By removing mass and reducing hydraulic gradients, thereby reducing the rate of downgradient chloroform migration, and allowing natural attenuation to be more effective, pumping at the productive, upgradient locations has a beneficial effect on this downgradient chloroform. Pumping at TW4-4 was implemented during the first quarter of 2010 to improve capture in this downgradient area to the extent allowable by the lower productivity conditions presumed to exist in this area. The beneficial effect of pumping TW4-4 is demonstrated by the decrease in chloroform concentrations at TW4-6 from 1,000 µg/L to 5.9 µg/L, and at TW4-26 from 13 µg/L to 2.8 µg/L since pumping began at TW4-4. Concentrations at these wells have decreased substantially even though they do not unambiguously appear to be within the hydraulic capture of TW4-4. As discussed in Section 4.1.1, however, the decrease in the long-term rate of water level rise at TW4-6 since pumping began at TW4-4 does suggest that TW4-6 is within the hydraulic influence of TW4-4. Regardless of whether TW4-6 can be demonstrated to be within hydraulic capture of TW4-4, pumping TW4-4 reduces chloroform migration to TW4-6 and TW4-26 by the mechanisms discussed above.

Chloroform exceeding 70 µg/L was detected at recently installed well TW4-29, located south of TW4-27 and east of TW4-26, and generally cross-gradient of TW4-4 and TW4-6 with respect to the groundwater flow directions implied by groundwater elevations in the area. As discussed in Section 4.1.1, this may represent chloroform migrating around the low permeability area defined

by TW4-27 and TW4-14. If the TW4-29 chloroform migrated from the area of TW4-4, it is also likely to be within the hydraulic influence of TW4-4 by analogy with the water level and concentration behavior of nearby wells TW4-6 and TW4-26. Therefore, by analogy with TW4-6 and TW4-26, continued pumping at TW4-4 is expected to influence, and eventually reduce, concentrations at TW4-29.

4.2 Review of Analytical Results

4.2.1 Current Chloroform Isoconcentration Map

Included under Tab J of this Report is a current chloroform isoconcentration map for the Mill site.

4.2.2 Chloroform Concentration Trend Data and Graphs

Attached under Tab K are tables summarizing values for all required parameters, chloride, nitrate/nitrite, carbon tetrachloride, chloroform, chloromethane, and methylene chloride, for each well over time.

Attached under Tab L are graphs showing chloroform concentration trends in each monitor well over time.

4.2.3 Interpretation of Analytical Data

Comparing the chloroform analytical results to those of the previous quarter, as summarized in the table included under Tab K, the following observations can be made:

- a) Chloroform concentrations have increased by more than 20% in the following wells compared to last quarter: MW-26, TW4-10, TW4-19, TW4-24, and TW4-26;
- b) Chloroform concentrations have decreased by more than 20% in the following wells compared to last quarter: TW4-21and TW4-22;
- c) Chloroform concentrations have remained within 20% in the following wells compared to last quarter: MW-4, TW4-1, TW4-2, TW4-4, TW4-5, TW4-6, TW4-7, TW4-11, TW4-18, TW4-20, and TW4-29;
- d) MW-32, TW4-3, TW4-8, TW4-9, TW4-12, TW4-13, TW4-14, TW4-16, TW4-23, TW4-25 and TW4-27 remained non-detect; and.
- e) Chloroform was not detected in recently installed wells TW4-28, TW4-30 and TW4-31.

As indicated, chloroform concentrations at many of the wells with detected chloroform were within 20% of the values reported for the wells during the previous quarter, suggesting that variations are within the range typical for sampling and analytical error. Wells MW-26, TW4-10, TW4-19, TW4-21, TW4-22, TW4-24 and TW4-26 had changes in concentration greater than 20%. Of the latter, MW-26 and TW4-19 are chloroform pumping wells, and TW4-22 and TW4-

24 are nitrate pumping wells. TW4-10 is located adjacent to chloroform pumping well MW-26 and TW4-21 is located adjacent to chloroform pumping well TW4-19. Fluctuations in concentrations at pumping wells and wells adjacent to pumping wells likely result in part from changes in pumping at both chloroform and nitrate pumping wells.

Chloroform pumping well TW4-20 had the highest detected chloroform concentration. Since the last quarter, the chloroform concentration in TW4-20 increased slightly from 26,300 µg/L to 26,800 µg/L, the concentration in adjacent pumping well TW4-19 increased from 2,070 µg/L to 8,100 µg/L, and the concentration in nearby well TW4-21 decreased from 328 to 244 µg/L. The chloroform concentration in nitrate pumping well TW4-22 decreased from 12,500 µg/L to 9,640 ug/L. Wells TW4-23 and TW4-25 remained non-detect for chloroform. The chloroform concentration in nitrate pumping well TW4-24 increased from 17.4 µg/L to 21.8 µg/L. TW4-24, located west of TW4-22, and TW4-25, located north of TW4-21, bound the chloroform plume to the west and north. In addition, the plume boundary remains between TW4-4 and TW4-6 (located just north of temporary well TW4-26), but the concentration of 246 µg/L at recently installed well TW4-29 (located east of TW4-26 and south of TW4-27) indicates that either there is an extension of the plume from the area of TW4-4 to TW4-29, or that a separate plume is present at TW4-29. If the plume extends from TW4-4 southeast to TW4-29, the extension would be narrow as it is bounded to the west by TW4-6 and TW4-26, to the east by recently installed well TW4-30, and to the north by TW4-27. Fourth quarter, 2013 data to be collected from new well TW4-33, located between TW4-4 and TW4-29, is expected to resolve this issue.

The chloroform concentration in TW4-6 increased from 4.9 μ g/L to 5.9 μ g/L, and, as discussed above, is outside the chloroform plume boundary. Since initiation of pumping of TW4-4 in the first quarter of 2010, concentrations at TW4-6 have decreased from 1,000 μ g/L to 5.9 μ g/L. TW4-6, installed in the second quarter of 2000, was the most downgradient temporary perched well prior to installation of temporary well TW4-23 in 2007 and temporary well TW4-26 in the second quarter of 2010. TW4-6 remained outside the chloroform plume between the second quarter of 2000 and the fourth quarter of 2008. TW4-6 likely remained outside the chloroform plume during this time due to a combination of 1) slow rates of downgradient chloroform migration in this area due to low permeability conditions and the effects of upgradient chloroform removal by pumping, and 2) natural attenuation.

The slow rate of chloroform migration in the vicinity of TW4-6 is demonstrated by comparing the rate of increase in chloroform at this well to the rate of increase in the nearest upgradient well TW4-4. Concentrations at TW4-4 increased from non-detect to more than 2,200 μ g/L within only 2 quarters whereas 16 quarters were required for concentrations in TW4-6 to increase from non-detect to only 81 μ g/L. This behavior is consistent with hydraulic tests performed at TW4-4, TW4-6, and TW4-26 during the third quarter of 2010 that indicate a nearly two order of magnitude decrease in permeability south (downgradient) of TW4-4. Chloroform migration rates in the vicinity of well TW4-26 and recently installed well TW4-29 are also expected to be relatively slow due to upgradient pumping and low permeability conditions.

However, chloroform appears to have migrated from the vicinity of TW4-4 southeast to recently installed well TW4-29. The southern portion of the plume is currently bounded to the south and southwest by TW4-6 and TW4-23 and to the east by TW4-8, TW4-12, TW4-13, TW4-14, TW4-

27, and recently installed wells TW4-30 and TW4-31. If the plume extends from TW4-4 southeast to TW4-29, the extension would be narrow as it is bounded to the west by TW4-6 and TW4-26, to the east by recently installed well TW4-30, and to the north by TW4-27. The nature and extent of the chloroform detected at TW4-29 is expected to be resolved by fourth quarter, 2013 sampling of new wells TW4-33 (located between TW4-4 and TW4-29) and TW4-34 (located south of TW4-29).

Furthermore, because the permeability of the perched zone at TW4-29 is similar to that of TW4-6, chloroform migration rates at TW4-29 are also expected to be slow. In addition, because of the influence of TW4-4 pumping, and by analogy with the water level and concentration behavior of nearby wells TW4-6 and TW4-26, chloroform concentrations at TW4-29 are expected to eventually trend downward.

Although changes in concentration have occurred in wells within the chloroform plume, the boundaries of the plume have not changed significantly since the last quarter, even under the influence of the nitrate pumping. Nitrate pumping has, however, caused the boundary of the northern portion of the chloroform plume to continue to move slightly to the west toward TW4-24. Continued operation of the nitrate pumping system is expected to produce a capture zone that will merge with and enhance the capture zone associated with the chloroform pumping system.

4.2.4 TW4-27

Installation of the perched groundwater monitoring well, TW4-27, was completed on November 8, 2011, as required by the May 26, 2011 DRC Request for Additional Information ("RFI"), and as delineated in the Final EFRI Work Plan and Schedule to Drill and Install Well TW4-27 (the "Plan"), submitted to DRC on October 3, 2011.

Per section 1.2 of the Plan, water level and chloroform concentration data will be collected from existing wells, as well as TW4-27, to determine if TW4-27 satisfies the stipulated criteria. TW4-27 will satisfy the stipulated criteria if the 70 ug/L chloroform isoconcentration line remains hydraulically upgradient of TW4-27, and groundwater contour lines show that TW4-27 is hydraulically downgradient of TW4-4 and TW4-6.

In addition to the criteria in section 1.2, section 1.3 of the Plan states that if water level data from TW4-27 indicates that the water level at TW4-14 is anomalous, TW4-14 will be abandoned, with the approval of the Director of the Division of Radiation Control. The water level at TW4-14 will be considered anomalous if the water level at TW4-27 is comparable to the water level at TW4-6.

Water level and analytical data collected from TW4-27 in 2012 and third quarter 2013 indicate that the 70 ug/L chloroform isoconcentration line remains hydraulically upgradient of TW4-27, and that TW4-27 is hydraulically downgradient of TW4-4 and TW4-6, satisfying the criteria described above. Furthermore, because the water level at TW4-27 is similar to the water level at TW4-14, but is approximately 13 feet lower than the water level at TW4-6, the water level at TW4-14 is not considered anomalous, and the section 1.3 abandonment criteria are not met.

The requirements of both the May 26, 2011 DRC RFI, and the October 3, 2011 Plan have been met, and no further action is required on the part of EFRI. Specific discussions related to TW4-27 will be removed from this quarterly report commencing with the fourth quarter 2013 quarterly report unless otherwise requested by DRC.

5.0 LONG TERM PUMP TEST AT MW-4, MW-26, TW4-19, TW4-20, AND TW4-4 OPERATIONS REPORT

5.1 Introduction

As a part of the investigation of chloroform contamination at the Mill site, EFRI has been conducting a Long Term Pump Test on MW-4, TW4-19, MW-26, and TW4-20, and, since January 31, 2010, TW4-4. The purpose of the test is to serve as an interim action that will remove a significant amount of chloroform-contaminated water while gathering additional data on hydraulic properties in the area of investigation.

Beginning in January 2013, EFRI began long term pumping of TW4-22, TW4-24, TW4-25, and TWN-02 as required by the Nitrate CAP, dated May 7, 2012 and the SCO dated December 12, 2012. Because wells TW4-22, TW4-24, and TW4-25 are chloroform program wells, they will be included in this report and any chloroform removal realized as part of this pumping will be calculated and included in this and all future chloroform quarterly reports.

The following information documents the operational activities during the quarter.

5.2 Pump Test Data Collection

The long term pump test for MW-4 was started on April 14, 2003, followed by the start of pumping from TW4-19 on April 30, 2003, from MW-26 on August 8, 2003, from TW4-20 on August 4, 2005, from TW4-4 on January 31, 2010, from TW4-22, TW4-24, and TW4-25 on January 26, 2013. Personnel from Hydro Geo Chem, Inc. were on site to conduct the first phase of the pump test and collect the initial two days of monitoring data for MW-4. EFRI personnel have gathered subsequent water level and pumping data.

Analyses of hydraulic parameters and discussions of perched zone hydrogeology near MW-4 has been provided by Hydro Geo Chem in a separate report, dated November 12, 2001, and in the May 26, 2004 Final Report on the Long Term Pumping Test.

Data collected during the quarter included the following:

- Measurement of water levels at MW-4, TW4-19, MW-26, and TW4-20 and, commencing regularly on March 1, 2010, TW4-4, on a weekly basis, and at selected temporary wells and permanent monitoring wells on a monthly basis.
- Measurement of pumping history, including:
 - pumping rates
 - total pumped volume
 - operational and non-operational periods.

- Periodic sampling of pumped water for chloroform and nitrate/nitrite analysis and other constituents
- Measurement of water levels weekly at TW4-22, TW4-24, TW4-25, and TWN-02 commencing January 28, 2013, and on a monthly basis for selected temporary wells and permanent monitoring wells.

5.3 Water Level Measurements

Beginning August 16, 2003, the frequency of water level measurements from MW-4, MW-26, and TW4-19 was reduced to weekly. From commencement of pumping TW4-20, and regularly after March 1, 2010 for TW4-4, water levels in these wells have been measured weekly. From commencement of pumping, water levels in wells TW4-22, TW4-24, TW4-25, and TWN-02 have been measured weekly. Depth to groundwater in all other chloroform contaminant investigation wells is monitored monthly. Copies of the weekly Depth to Water monitoring sheets for MW-4, MW-26, TW4-19, TW4-20, TW4-4, TW4-22, TW4-24, TW4-25 and TWN-02 and the monthly Depth to Water monitoring sheets for all of the chloroform contaminant investigation wells and the selected temporary wells and permanent monitoring wells are included under Tab C. Monthly depth to water measurements for the quarter are recorded in the Field Data Worksheets included under Tab D.

5.4 Pumping Rates and Volumes

Table 2 summarizes the recovered mass of chloroform by well per quarter and historically since the inception of the chloroform recovery program for the active pumping wells. It is important to note that TWN-02 is a nitrate program well and is sampled only for nitrate and chloride as required by the nitrate program. Because TWN-02 is not sampled or analyzed for chloroform, the mass of chloroform recovered is not calculated.

The pumping wells do not pump continuously, but are on a delay device. The wells purge for a set amount of time and then shut off to allow the well to recharge. Water from the pumping wells is transferred to a holding tank. The water in the holding tank is used in the Mill processes. The pumping rates and volumes for each of the pumping wells are shown in Table 3. No operational problems were observed with the wells or pumping equipment during the quarter, however, two items were noted during the quarter as described below.

5.4.1 Weather Event of September 18, 2013

The Mill experienced combined rainstorm/hailstorms on September 17 and 18, 2013. During the September 18, 2013 storm, the Mill received nearly the highest daily precipitation in its history, specifically 0.76 inches of rainfall and hail within 10 minutes, as measured by the Mill's on-site meteorological station. The September 17 and 18, 2013 rainfall was accompanied by hail ranging up to 4 centimeters in diameter. As a result of damage and flooding to the electrical substation, power to the Mill was interrupted for less than 24 hours. The power outage ultimately interrupted pumping of all chloroform and nitrate pumping wells for less than 24 hours. EFRI provided an informal notification to DRC on September 19, 2013 to alert them to the potential that the chloroform and nitrate pumping equipment was out of service due to power loss. The power was restored in less than 24 hours, and notifications to DRC were not required.

5.4.2 TW4-20 and TW4-24

During the weekly check of the pumping wells on July 2, 2013 the Mill Environmental Staff noted a decreased flow rate in pumping wells TW4-20 and TW4-24 due to multiple wells pumping at the same time. Mill Environmental Staff noted that they changed the timer on TW4-24 so that the well pumps at different times from other wells in the pumping network to maximize the pumping efficiency of the pumping network. Based on observed flow rates in subsequent weeks, the timer change was effective in maintaining historical flow rates and no further actions were necessary. Notifications to DRC were not required.

5.5 Mass Removed

Chloroform removal was estimated as of the first quarter 2007. Since that estimation, the mass removed by well for each quarter has been compiled in Table 2, which shows the pounds of chloroform that have been removed to date.

5.6 Inspections

All of the required inspections were completed and the inspection forms are included in Tab C.

5.7 Conditions That May Affect Water Levels in Piezometers

No water was added to the any of the wildlife ponds during the quarter.

6.0 CORRECTIVE ACTION REPORT

There are no corrective actions required during the current monitoring period.

6.1 Assessment of Previous Quarter's Corrective Actions

There were no corrective actions required during the previous monitoring period.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The water level contour maps for the third quarter, 2013 indicate effective capture of water containing high chloroform concentrations in the vicinity of chloroform pumping wells MW-4, MW-26, TW4-19, and TW4-20. Well-defined capture zones related to start-up of nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 are not clearly evident. A well-defined capture zone is also not evident at chloroform pumping well TW4-4. The capture zone associated with TW4-4 is likely obscured by the low water level at adjacent well TW4-14 and the two orders of magnitude decrease in permeability south of TW4-4. However, the decrease in chloroform concentrations at TW4-6 (located downgradient of TW4-4) and the decrease in rate of water level rise since the fourth quarter of 2009 are likely related to TW4-4 pumping.

Third quarter, 2013 chloroform concentrations at many of the wells with detected chloroform were within 20% of the values reported during the previous quarter, suggesting that variations are within the range typical for sampling and analytical error. Changes in concentration greater

than 20% occurred in wells MW-26, TW4-10, TW4-19, TW4-21, TW4-22, TW4-24 and TW4-26.

Of the wells showing changes in concentration greater than 20%, MW-26 and TW4-19 are chloroform pumping wells, and TW4-22 and TW4-24 are nitrate pumping wells. TW4-10 is located adjacent to chloroform pumping well MW-26, and TW4-21 is located adjacent to chloroform pumping well TW4-19. Fluctuations in concentrations at pumping wells and wells adjacent to pumping wells likely result in part from changes in pumping at both chloroform and nitrate pumping wells. Changes in concentration at chloroform wells are also expected to result from continued operation of nitrate pumping wells as the capture zone associated with the nitrate pumping system develops and merges with the capture zone associated with the chloroform pumping system.

Between the current and previous quarters, the concentration in downgradient temporary well TW4-26 increased from approximately 2 μ g/L to approximately 3 μ g/L. Changes in concentrations at TW4-26 (and TW4-6) are likely the result of their location near the downgradient edge of the plume where changes in upgradient pumping are expected to affect concentrations.

The highest chloroform concentration (26,800 μ g/L) was detected at chloroform pumping well TW4-20. Since the last quarter, the chloroform concentration in TW4-20 increased slightly from 26,300 μ g/L to 26,800 μ g/L, the concentration in adjacent pumping well TW4-19 increased from 2,070 μ g/L to 8,100 μ g/L, and the concentration in nearby well TW4-21 decreased from 328 to 244 μ g/L. The chloroform concentration in nitrate pumping well TW4-22 decreased from 12,500 μ g/L to 9,640 μ g/L. Fluctuations in concentrations in wells near TW4-20 are likely related to their location near the suspected former office leach field source area in addition to variations in pumping in TW4-20 and nearby wells. Regardless of these measured fluctuations in chloroform concentrations, sampling of temporary wells TW4-24 (located west of TW4-22) and TW4-25 (located north of TW4-21), indicates these wells remain outside the chloroform plume and thus bound the plume to the west and north. Chloroform was not detected at TW4-25 remained nondetect for chloroform.

The chloroform concentration at well TW4-6 increased slightly from 4.9 µg/L to 5.9 µg/L. This well has been outside the chloroform plume boundary since the fourth quarter of 2010. In the past, TW4-6 has been both within and outside the plume. From the first quarter of 2009 through the fourth quarter of 2010, TW4-6 was within the plume. Prior to that time, between the time of well installation in the second quarter of 2000 and the fourth quarter of 2008, TW4-6 was outside the plume. Although fluctuations in concentrations have occurred, this well likely remained outside the plume between installation in 2000 and the fourth quarter of 2008 due to a combination of 1) slow rates of downgradient chloroform migration in this area due to low permeability conditions and the effects of upgradient chloroform removal by pumping, and 2) natural attenuation. The decreases in concentrations at TW4-6 since the fourth quarter of 2009 are likely the result of upgradient pumping, in particular operation of adjacent chloroform pumping well TW4-4 (which commenced in the first quarter of 2010). Chloroform remained non-detect at downgradient temporary well TW4-23. The southern portion of the chloroform

plume is bounded to the southwest and south (respectively) by TW4-23 and TW4-6 (with a chloroform concentration of 5.9 μ g/L) and to the east by TW4-8, TW4-12, TW4-13, TW4-14, TW4-27, and recently installed wells TW4-30 and TW4-31.

However, chloroform appears to have migrated from the vicinity of TW4-4 southeast to recently installed well TW4-29, and the extent of the plume to the south/southeast of TW4-29 is not currently known. If the plume extends from TW4-4 southeast to TW4-29, the extension would be narrow as it is bounded to the west by TW4-6 and TW4-26, to the east by recently installed well TW4-30, and to the north by TW4-27. The nature and extent of the chloroform detected at TW4-29 is expected to be resolved by fourth quarter, 2013 sampling of new wells TW4-33 (located between TW4-4 and TW4-29) and TW4-34 (located south of TW4-29). Furthermore, because the hydraulic conductivity of the perched zone at TW4-29 is similar to that of TW4-6, chloroform migration rates at TW4-29 are also expected to be low.

Although changes in concentration have occurred in wells within the chloroform plume, boundaries of the plume have not changed significantly since the last quarter, even under the influence of the nitrate pumping. Nitrate pumping has, however, caused the boundary of the northern portion of the chloroform plume to continue to move slightly to the west toward TW4-24.

Continued operation of chloroform pumping wells MW-4, MW-26, TW4-19, and TW4-20 is recommended. Pumping these wells, regardless of any short term fluctuations in concentrations detected at the wells (such as at TW4-20), helps to reduce downgradient chloroform migration by removing chloroform mass and reducing average hydraulic gradients, thereby allowing natural attenuation to be more effective. Continued operation of chloroform pumping well TW4-4 is also recommended to improve capture of chloroform to the extent practical in the southern portion of the plume. The general decrease in chloroform concentrations at TW4-6 from 1,000 µg/L to 5.9 µg/L since the first quarter of 2010 is likely related to pumping at TW4-4. The decrease in the long-term rate of water level rise at TW4-6 since TW4-4 pumping began, which suggests that TW4-6 is within the hydraulic influence of TW4-4, is consistent with the decrease in chloroform concentrations at TW4-6. Furthermore, because of the influence of TW4-4 pumping, and by analogy with the water level and concentration behavior of nearby wells TW4-6 and TW4-26, chloroform concentrations at TW4-29 are expected to eventually trend downward. Several more quarters of data will be likely be required before trends at TW4-29 can be properly evaluated.

While past recharge from the ponds has helped limit many constituent concentrations within the chloroform and nitrate plumes by dilution, the associated groundwater mounding has increased hydraulic gradients and contributed to plume migration. Since use of the northern wildlife ponds ceased in March 2012, the reduction in recharge and decay of the associated groundwater mound are expected to increase many constituent concentrations within the plumes while reducing hydraulic gradients and acting to reduce rates of plume migration. EFRI and its consultants have raised the issues and potential effects associated with cessation of water delivery to the northern wildlife ponds during discussions with DRC in March 2012 and May 2013.

The impacts associated with cessation of water delivery to the northern ponds are expected to propagate downgradient (south and southwest) over time. Wells close to the ponds are generally expected to be impacted sooner than wells farther downgradient of the ponds. Therefore, constituent concentrations are generally expected to increase in downgradient wells close to the ponds before increases are detected in wells farther downgradient of the ponds. Although such increases are anticipated to result from reduced dilution, the magnitude and timing of the increases are difficult to predict due to the complex permeability distribution at the site and factors such as pumping and the rate of decay of the groundwater mound. The potential exists for some wells completed in higher permeability materials to be impacted sooner than some wells completed in lower permeability materials even though the wells completed in lower permeability materials may be closer to the ponds.

Localized increases in concentrations of constituents such as nitrate and chloride within and near the nitrate plume may occur even when the nitrate plume is under control based on the Nitrate CAP requirements. Ongoing mechanisms that can be expected to increase the concentrations of nitrate and chloride locally as a result of reduced wildlife pond recharge include but are not limited to:

- 1) Reduced dilution the mixing of low constituent concentration pond recharge into existing perched groundwater will be reduced over time.
- 2) Reduced saturated thicknesses dewatering of higher permeability layers receiving primarily low constituent concentration pond water will result in wells intercepting these layers receiving a smaller proportion of the low constituent concentration water.

The combined impact of the above two mechanisms may be especially evident at chloroform and nitrate pumping wells and non-pumped wells adjacent to the pumped wells. The overall impact is expected to be generally higher constituent concentrations in these wells over time until mass reduction resulting from pumping and natural attenuation eventually reduce concentrations.

8.0 ELECTRONIC DATA FILES AND FORMAT

EFRI has provided to the Executive Secretary an electronic copy of all laboratory results for groundwater quality monitoring conducted under the chloroform contaminant investigation during the quarter, in Comma Separated Values format. A copy of the transmittal e-mail is included under Tab M.

9.0 SIGNATURE AND CERTIFICATION

This document was prepared by Energy Fuels Resources (USA) Inc. on November 19, 2013.

Energy Fuels Resources (USA) Inc.

By:

Frank Filas, P.E

Vice President, Permitting and Environmental Affairs

Certification:

I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Frank Filas, P.E

Vice President, Permitting and Environmental Affairs

Energy Fuels Resources (USA) Inc.

Tables

Table 1: Summary of Well Sampling for the Period

Well	Sample Date	Date of Lab Report
MW-04	9/3/2013	9/18/2013
TW4-01	9/12/2013	9/24/2013
TW4-02	9/12/2013	9/24/2013
TW4-03	8/29/2013	9/11/2013
TW4-03R	8/28/2013	9/11/2013
MW-04 TW4-01 TW4-02 TW4-03 TW4-03R TW4-04 TW4-05 TW4-05 TW4-05 TW4-06 TW4-07 TW4-08 TW4-09 TW4-10 TW4-11 TW4-12 TW4-13 TW4-14 MW-26 TW4-16 MW-32 TW4-18 TW4-19 TW4-20 TW4-21 TW4-22 TW4-23	9/3/2013	9/18/2013
TW4-05	9/5/2013	9/18/2013
TW4-05R	9/4/2013	9/18/2013
TW4-06	9/5/2013	9/18/2013
TW4-07	9/12/2013	9/24/2013
TW4-08	9/5/2013	9/18/2013
TW4-09	9/5/2013	9/18/2013
TW4-10	9/12/2013	9/24/2013
TW4-11	9/12/2013	9/24/2013
TW4-12	8/29/2013	9/11/2013
TW4-13	8/29/2013	9/11/2013
TW4-14	8/29/2013	9/11/2013
MW-26	9/3/2013	9/18/2013
TW4-16	9/5/2013	9/18/2013
MW-32	9/4/2013	9/18/2013
TW4-18	9/5/2013	9/18/2013
TW4-19	9/3/2013	9/18/2013
TW4-20	9/3/2013	9/18/2013
TW4-21	9/12/2013	9/24/2013
TW4-22	9/3/2013	9/18/2013
TW4-23	9/5/2013	9/18/2013
TW4-24	9/3/2013	9/18/2013
TW4-25	9/3/2013	9/18/2013
TW4-26	9/5/2013	9/18/2013
TW4-27	8/29/2013	9/11/2013
TW4-28	8/29/2013	9/11/2013
TW4-29	9/12/2013	9/24/2013
TW4-29 Resample	9/26/2013	9/30/2013
TW4-30	8/29/2013	9/11/2013
TW4-31	9/5/2013	9/18/2013
TW4-60	9/12/2013	9/24/2013
TW4-65	8/29/2013	9/11/2013
TW4-70	9/5/2013	9/18/2013

All sample locations were sampled for Chloroform, Carbon Tetrachloride, Chloromethane, Methylene Chloride, Chloride and Nitrogen

Highlighted wells are continuously pumped.

[&]quot;R" following a well number deisgnates a rinsate sample collected prior to purging of the well of that number.

TW4-60 is a DI Field Blank, TW4-65 is a duplicate of TW4-03, and TW4-70 is a duplicate of TW4-08.

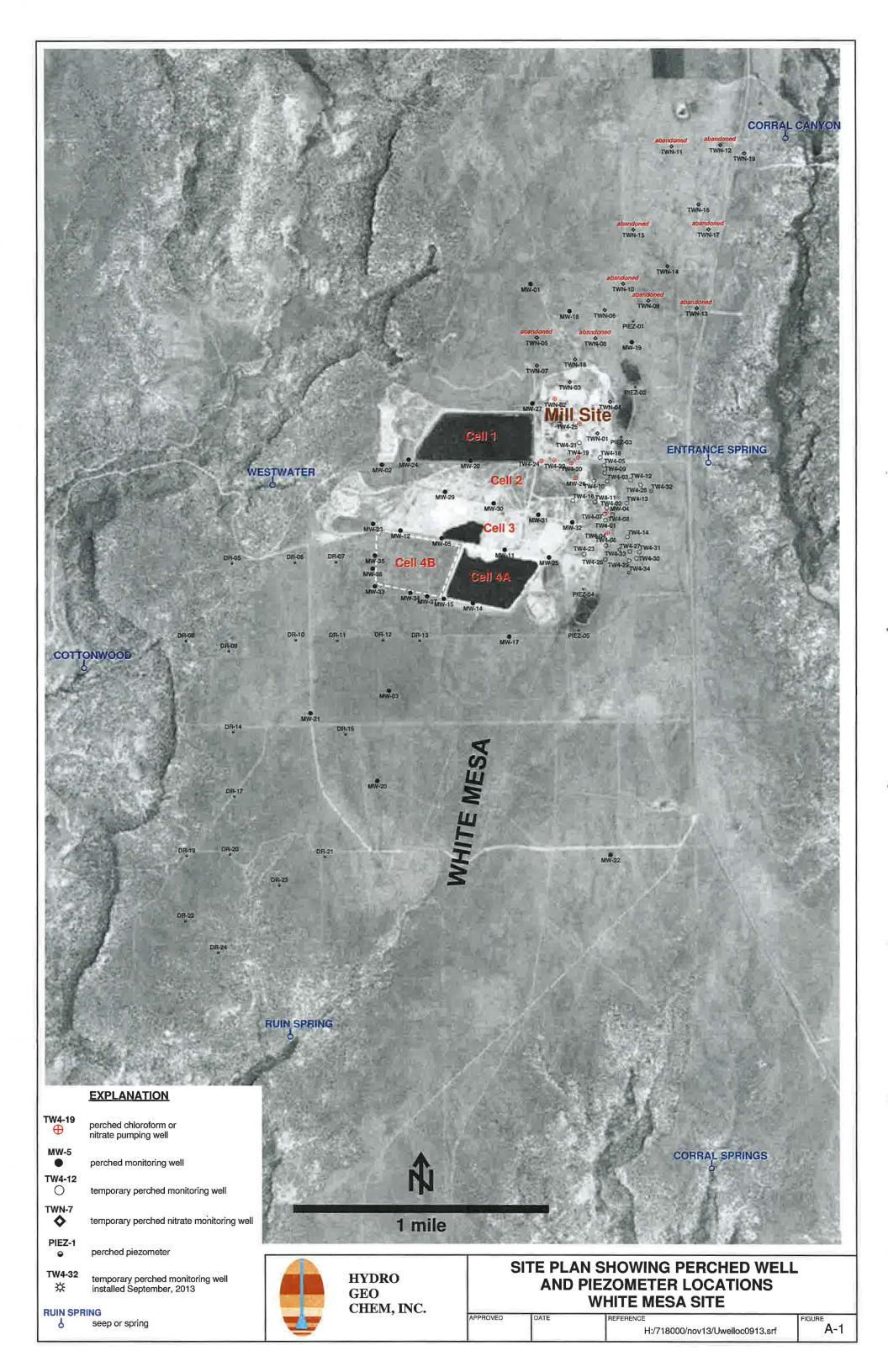
Table 2 Chloroform Mass Removal Per Well Per Quarter

Quarter	MW-4 (lbs.)	TW4-15 (MW-26) (lbs.)	TW4-19 (lbs.)	TW4-20 (lbs.)	TW4-4 (lbs.)	TW4-22 (lbs.)	TW4-24 (lbs.)	TW4-25 (lbs.)	Quarter Totals (lbs.
Q1 2007*	36.8	12.9	150.2	87.0	NA	NA	NA	NA	286.9
Q2 2007	1.4	0.1	0.0	2.5	NA	NA	NA	NA	4.0
Q3 2007	2.2	0.8	2.9	3.1	NA	NA	NA	NA	9.0
Q4 2007	1.7	1.0	3.1	4.8	NA	NA	NA	NA	10.6
Q1 2008	1.7	0.4	4.6	7.2	NA	NA	NA	NA	13.8
Q2 2008	1.3	0.5	3.2	9.9	NA	NA	NA	NA	14.8
Q3 2008	1.2	0.3	15.9	9.3	NA	NA	NA	NA	26.8
Q4 2008	1.3	0.3	20.7	0.4	NA	NA	NA	NA	22.7
Q1 2009	1.7	0.4	4.3	3.6	NA	NA	NA	NA	10.0
Q2 2009	6.8	0.2	3.7	2.8	NA	NA	NA	NA	13.5
Q3 2009	1.5	0.4	11.1	5.5	NA	NA	NA	NA	18.5
Q4 2009	4.8	0.6	17.8	26.1	NA	NA	NA	NA	49.4
Q1 2010	0.9	0.4	2.7	0.4	NA	NA	NA	NA	4.5
Q2 2010	1.5	1.0	6.8	5.9	1.4	NA	NA	NA	16.5
Q3 2010	1.3	1.2	2.0	4.9	1.3	NA	NA	NA	10.6
Q4 2010	1.1	0.5	7.7	7.4	1.2	NA	NA	NA	17.9
Q1 2011	1.1	0.2	12.9	9.6	1.1	NA	NA	NA	24.9
Q2 2011	1.2	0.8	5.3	4.6	1.1	NA	NA	NA	13.1
Q3 2011	1.2	0.4	1.1	4.1	1.2	NA	NA	NA	8.1
Q4 2011	1.2	0.8	2.7	4.8	1.4	NA	NA	NA	10.9
Q1 2012	1.1	0.6	0.8	7.0	1.0	NA	NA	NA	10.5
Q2 2012	1.1	0.6	0.7	6.9	1.1	NA	NA	NA	10.4
Q3 2012	1.1	0.7	1.4	2.4	1.1	NA	NA	NA	6.7
Q4 2012	0.9	0.3	2.0	3.2	0.9	NA	NA	NA	7.3
Q1 2013	0.9	0.4	7.4	2.8	0.7	1.5	0.0	0.0	13.7
Q2 2013	0.9	0.9	3.9	4.4	0.7	2.7	0.0	0.0	13.5
Q3 2013	0.9	0.6	22.3	4.4	0.7	2.1	0.05	0.0	31.1
Well Totals (pounds	78.7	27.3	317.1	234.9	15.0	6.3	0.1	0.0	679.6

^{*} Q1 2007 represents the cumulative total prior to and including Q1 2007.

Table 3 Chloroform Well Pumping Rates and Volumes

	Volume of Water Pumped	
Pumping Well Name	during the quarter (gals)	Average Pump Rate (gpm)
MW-4	72,898.8	3.5
MW-26	25,763.0	10.3
TW4-4	63,515.4	8.1
TW4-19	329,460.1	14.0
TW4-20	19,731.0	9.7
TW4-22	25,592.9	18.2
TW4-24	267,703.5	17.5
TW4-25	145,840.9	18.2
TWN-2	50,036.5	18.6


INDEX OF TABS

Tab A	Site Plan and Perched Well Locations White Mesa Site						
Tab B	Order of Sampling and Field Data Worksheets						
Tab C	Weekly and Monthly Depth to Water Data						
	Kriged Current Quarter Groundwater Contour Map, Capture Zone Map, Capture Zone Details and Depth to Water Data						
Tab E	Kriged Previous Quarter Groundwater Contour Map						
Tab F	Hydrographs of Groundwater Elevations Over Time for Chloroform Monitoring Wells						
Tab G	Depths to Groundwater and Elevations Over Time for Chloroform Monitoring Wells						
Tab H	Laboratory Analytical Reports						
Tab I	Quality Assurance and Data Validation Tables						
	 I-1 Field Data QA/QC Evaluation I-2 Holding Time Evaluation I-3 Receipt Temperature Check I-4 Analytical Method Check I-5 Reporting Limit Evaluation I-6 Trip Blank Evaluation I-7 QA/QC Evaluation for Sample Duplicates I-8 QC Control Limits for Analyses and Blanks 						
	I-9 Rinsate Check						
Tab J	Kriged Current Quarter Chloroform Isoconcentration Map						
Tab K	Analyte Concentration Data Over Time						
Tab L	Chloroform Concentration Trend Graphs						

Tab M CSV Transmittal Letter

Tab A

Site Plan and Perched Well Locations White Mesa Site

Tab B

Order of Sampling and Field Data Worksheets

Order of Contamination for 3rd Quarter 2013 Chloroform Purging Event

	(Chloroforn	n	Water	Well			
Well	Sample time	Levels	Rinsate date/time	level	Depth			
TW4-03		ND		-		TW4-03R	8/28/13	0933
TW4-12	0715	ND			101.5			
TW4-13	0721	ND			102.5			
TW4-14	07:29	ND			93			
TW4-27	6735	ND		,	96			
TW4-28	0743	ND			107			
TW4-30	0751	ND			92.5			
-TW4-31	9/5/13 0655	ND			106		2	
-MW-32	9/4/13 1240	ND				Bladder pump		
TW4-23	9/5/13 0704	ND			114			
TW4-08		ND			125			
TW4-09		ND			120			
TW4-16		ND			142			
TW4-25	9/3/13 1240	ND				Cont. Pumping		
TW4-26	9/5/13 0748	2.12			86			
TW4-06		4.86			97.5	TW4-05R_	1411111	1407
TW4-05		11.2			120	TW4-05 1.	09092013	1 1-7
TW4-24		17.4			112.5	Cont. Pumping		
TW4-18		37.9			137.5			
TW 4-29	9/12/13 0657	242			93.5			
TW4-21		328			121			
TW4-10	9/12/13 0723	486			111			
TW4-11		788			100			
▼ TW4-07	9/12/13 0753	953			120			
TW4-01	9/12/13 0800	1100			110			
TW4-04	9/3/13 1995	3471330			112	Cont. Pumping		
	9/3/13 1335	1490			124	Cont. Pumping		
TW4-02		3110			120			
TW4-19	9/3/13 1030	2070			125	Cont. Pumping		
MW-26	9/3/13 1325	4030			122.5	Cont. Pumping		
TW4-22		12500			113.5	Cont. Pumping		
TW4-20		26300			106	Cont. Pumping		

TW4-60 D.I. Blank 4/12/13 0845
TW4-65 Duplicate 9/29/13 0700
Comments:

ATTACHMENT 1-2

WHITE MESA URAN FIELD DATA WORKSHEET F	The state of the s
Description of Sampling Event: 3rd Quarter Chlor	
Location (well name): MW-04	Sampler Name and initials: Tanner Holliday/TH
Field Sample ID	_
Date and Time for Purging 9/3/2013 and	Sampling (if different)
Well Purging Equip Used: pump or bailer W	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloratorm Prev. V	Well Sampled in Sampling Event TV MW-26
pH Buffer 7.0 7.0	H Buffer 4.0 니.Ø
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 124.00
Depth to Water Before Purging 69.71 Casing	Volume (V) 4" Well: 0 (.653h) 3" Well: 19.92 (.367h)
Conductance (avg) PH of	Water (avg) 7,15
Well Water Temp. (avg) 15,63 Redox Potentia	al (Eh) Z59 Turbidity Z.5
Weather Cond. Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 29°
Time 1334 Gal. Purged 6	Time Gal. Purged
Conductance [1916 pH 7.15	Conductance pH
Temp. °C 15.63	Temp. °C
Redox Potential Eh (mV) Z59	Redox Potential Eh (mV)
Turbidity (NTU) 2.7	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged								
Pumping Rate Calculation								
Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V) $T = 2V/Q = 6$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness	, number	of gallons	evacuated	0	-			
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N		Y	N
/OCs	区		3x40 ml		\Z	HCL	K	
Vutrients	E		100 ml		X	H2SO4	K	
Ieavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	1		Sample volume	0	図			K
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 74.95 Sample Time 1335								
Comment See instruction								
Arrived on site at 1330. Tanner and Garrin present to collect samples samples collected at 1335. Water was Clear Left site at 1339								
Continuous Pumping Well								

MW-04 09-03-2013

Do not touch this cell (SheetName)

CF ENERGY FUELS

Description of Sampling Event: 3rd Quarter Chloro	
Description of Sampling Event: 3rd Quarter Chloro	The state of the s
Location (well name): Tw4-01	Sampler Name and initials:
Field Sample ID TW4-01_09122013	
Date and Time for Purging 9/11/2013 and	Sampling (if different) 9/12/2013
Well Purging Equip Used: Dpump or D bailer W	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. W	Vell Sampled in Sampling Event
pH Buffer 7.0 7.0 pH	H Buffer 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 110.00
Depth to Water Before Purging 64.35 Casing	Volume (V) 4" Well: 24.80 (.653h) 3" Well: 0 (.367h)
Conductance (avg) 2129 pH of V	Water (avg) 6.22
Well Water Temp. (avg) 14,93 Redox Potential	1 (Eh) 308 Turbidity 7.5
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 1209 Gal. Purged 33	Time [1210 Gal. Purged 44
Conductance 2126 pH 6.20	Conductance 2135 pH 6.29
Temp. °C 14.93	Temp. °C 14.99
Redox Potential Eh (mV) 309	Redox Potential Eh (mV) 308
Turbidity (NTU) 75	Turbidity (NTU)
Time 1211 Gal. Purged 55	Time 1212 Gal. Purged 66
Conductance 2131 pH 6.25	Conductance Z1Z4 pH 6.22
Temp. °C	Тетр. °С
Redox Potential Eh (mV)	Redox Potential Eh (mV) 308
Turbidity (NTU)	Turbidity (NTU)

canada monto mg Quanty i scara noo	. 10.1 (00 11)							
Volume of Water Purged GG gallon(s)								
Pumping Rate Calculation	Pumping Rate Calculation							
Flow Rate (Q), in gpm. S/60 = $\boxed{1}$ Time to evacuate two casing volumes (2V) $T = 2V/Q = \boxed{5.41}$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness	, number	of gallons	s evacuated	D				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	X		3x40 ml		X	HCL	D	
lutrients	N		100 ml		Ď	H2SO4	Ď	
leavy Metals			250 ml			HNO3		
Il Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
other (specify)	K		Sample volume	13	E			Ø
Chloride If preservative is used, specify Type and Quantity of Preservative:								
inal Depth 106,88 Sample Time 0800 See instruction								
omment								
Arrived on site at 1203 Tanner and Garrin present for purge. Purge began at 1206 Purged well for a total of 6 minutes. Purge ended at 1212. water was a little murky. left site at 1214 Arrived on site at 0755 Tanner and Garrin present to collect samples. Depth to water was 64.46 Samples bailed and collected at 0800 Left site at 0802								
64,46 Samples bo	Lied and	y Whee	71-91 00.		3, 10			

TW4-01 09-11-2013 Do not touch this cell (SheetName)

1	See	instruction
N.	See	instruction

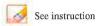
Description of Sampling Event: 3rd Quarter Ch	location 2013
_ J J J J J J J J J J J J J J J J J J J	Sampler Name
Location (well name): TW4-02	and initials: Tanner Holliday/TH
Field Sample ID TW4 02_09 22013	
Date and Time for Purging 9/11/2013 and	Sampling (if different) 9/12/2013
Well Purging Equip Used: Dpump or Dbailer W	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. V	Well Sampled in Sampling Event TW4-01
pH Buffer 7.0 7 0 pH	H Buffer 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 120.00
Depth to Water Before Purging 65.60 Casing	Volume (V) 4" Well: 35,52 (.653h) (.367h)
Conductance (avg) pH of V	Water (avg) 6.54
Well Water Temp. (avg) Redox Potentia	1 (Eh) 2.89 Turbidity 4
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 22°
Time 1242 Gal. Purged 63	Time Gal. Purged
Conductance 3466 pH 6.54	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0807 Gal. Purged 0	Time 0809 Gal. Purged 8
Conductance 3070 pH 6.73	Conductance 3110 pH 6.72
Temp. °C 14.46	Тетр. °С
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
~	: 🔿

Volume of Water Purged 63 gallon(s) After								
Pumping Rate Calculation								
Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V) $T = 2V/Q = 6.45$								
Number of casing volumes	evacuated	d (if other	than two)	1.77				
If well evacuated to dryness	, number	of gallons	s evacuated	63				
Name of Certified Analytical Laboratory if Other Than Energy Labs AWAL								
Type of Sample	Sample Taken		Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preservative Added	
	Y	N	specified below)	Y	N		Y	N
OCs			3x40 ml		[2]	HCL	团	
utrients	N		100 ml		[<u>X</u> 1	H2SO4	ZÍ	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	À		Sample volume		X			
Chloride						If preservative is used Type and Quantity of		ive:

Final Depth 117,83

Sample Time 0807

Comment


Arrived on site at 1232. Tanner and Garrin present for purge. Purge began at 1236. Purged well for a total of 5 minutes and 45 seconds, Purge ended at 1242. Water was a little murky. Left site at 1245 Arrived on site at 0802 Tanner and Garrin present to collect samples. Depth to water was Left site at 0809 Samples bailed at 0807

TW4-02 09-11-2013

Do not touch this cell (SheetName)

See instruction

FIELD DATA WORKSHEET FO	
Description of Sampling Event: 3rd Quarter Chlo	
Location (well name), Tull - A2	Sampler Name
Location (well name): TW4-03	and initials: Tanner Holliday 1777
Field Sample ID TW4-03_08292013	
Date and Time for Purging 8/28/2013 and	Sampling (if different) 8/29/2013
Well Purging Equip Used: Dpump or D bailer W	Tell Pump (if other than Bennet) Grundfos
Purging Method Used: 2 casings 3 casings	Time to the second seco
Sampling Event Quarterly Chloroform Prev. W	Vell Sampled in Sampling Event TWY-03R
pH Buffer 7.0 7.0	Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 41.00
Depth to Water Before Purging 51.70 Casing	Volume (V) 4" Well: 58.3 (.653h) (.367h)
Conductance (avg) I646 pH of V	Vater (avg) (6.8)
Well Water Temp. (avg) 14.78 Redox Potential	(Eh) 272 Turbidity 14.6
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 0953 Gal. Purged 91	Time Gal. Purged
Conductance 6.81	Conductance pH
Temp. °C 4.78	Temp. °C
Redox Potential Eh (mV) 272	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time O659 Gal. Purged O	Time 6701 Gal. Purged 6
Conductance 1630 pH 700	Conductance 1635 pH 6.97
Temp. °C [5.48]	Temp. °C \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
	1 ~

91		gallon(s)	A	ter			
					olumes (2V)		
evacuate	d (if other	than two)	1.56				
s, number	of gallons	s evacuated	91				
cal Labora	tory if Oth	ner Than Energy Labs	AWA	L			
Sampl	le Taken	Sample Vol (indicate if other than as	Filtered		Preservative Type	Preservative Added	
Y	N	specified below)	Y	N		Y	N
N.		3x40 ml		Ø	HCL		
X		100 ml		X	H2SO4	X	
		250 ml			HNO3		
		250 ml			No Preserv.		
		1,000 ml			HNO3		
X		Sample volume		×			M
					If preservative is used Type and Quantity of		
	Sample Y	evacuated (if other s, number of gallons cal Laboratory if Other Sample Taken Y N M D D D D D D D	Time to evac T = 2V/Q = evacuated (if other than two) s, number of gallons evacuated cal Laboratory if Other Than Energy Labs Sample Taken Y N Sample Vol (indicate if other than as specified below) 3x40 ml 3x40 ml 100 ml 100 ml 100 ml 1,000 ml Sample volume	Time to evacuate two T = 2V/Q = 10.60 evacuated (if other than two) s, number of gallons evacuated cal Laboratory if Other Than Energy Labs Sample Taken Y N Sample Vol (indicate if other than as specified below) Y 3x40 ml 3x40 ml	Time to evacuate two casing v T = 2V/Q = 10.60 evacuated (if other than two) s, number of gallons evacuated gall Laboratory if Other Than Energy Labs Sample Taken Sample Vol (indicate if other than as specified below) N	Time to evacuate two casing volumes (2V) T = 2V/Q = 10.60 evacuated (if other than two) s, number of gallons evacuated al Laboratory if Other Than Energy Labs Sample Taken	Time to evacuate two casing volumes (2V) T = 2V/Q = 10.60 evacuated (if other than two) s, number of gallons evacuated al Laboratory if Other Than Energy Labs Sample Taken

Final Depth 39.83

Sample Time

0700

See instruction

Arrived on site at 0940. Tanner and Garrin Present For purge. Purge began at 0945 Purged well for a total of 8 minutes and 20 seconds. water was clear. Purged well Dry! Purge ended at 0953. Left Site at 0957

Arrived on site at 0655 Tanner and Garrin Present to collect samples. Depth to water

was 51.93 Samples bailed and collected at 0700 Left site at 0703 Was 51.93

TW4-03 08-28-2013 Do not touch this cell (SheetName)

1	See	instruction
1		

	Description of Sampling Event: 3rd Quarter Chlorofficm 2013						
Description of Sampling Event.	Sampler Name						
Location (well name): TW4-03R	and initials: Tanner Holliday /TH						
Field Sample ID TW4-03R_08282013							
Date and Time for Purging 8/28/2013 and	Sampling (if different)						
Well Purging Equip Used: Dump or D bailer W	Tell Pump (if other than Bennet)						
Purging Method Used: 2 casings 3 casings							
Sampling Event Quarterly Chlorotorm Prev. W	Vell Sampled in Sampling Event						
pH Buffer 7.0 PH	Buffer 4.0 4.0						
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft):						
Depth to Water Before Purging \(\begin{align*} \lambda \\ \lambda \\ \end{align*} \) Casing	Volume (V) 4" Well: 0 (.653h) 3" Well: 0 (.367h)						
Conductance (avg) pH of V	Water (avg) 8.70						
Well Water Temp. (avg) 22.61 Redox Potential	(Eh) 286 Turbidity 0,3						
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)						
Time 0432 Gal. Purged 132	Time Gal. Purged						
Conductance 1.4 pH 8.70	Conductance pH						
Temp. °C 22.61	Temp. °C						
Redox Potential Eh (mV) Z86	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Time Gal. Purged	Time Gal. Purged						
Conductance pH	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						

Volume of Water Purged	150		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. $S/60 = $			Time to evac $T = 2V/Q =$		casing v	rolumes (2V)		
Number of casing volumes	evacuate	d (if other	than two)	0				
If well evacuated to dryness	, number	of gallons	s evacuated	Ò				
Name of Certified Analytica	ıl Labora	tory if Oth	ner Than Energy Labs	AWAL				
Type of Sample	Sampl	le Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preservative Added	
	Y	N	specified below)	Y	N		Y	N
/OCs	[Z]		3x40 ml		Z	HCL		
lutrients	N		100 ml		Y	H2SO4	Ø	
leavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ŋ		Sample volume		N		0	Ø
If preservative is used, specify Type and Quantity of Preservative: Sample Time 0933 See instruction								
Arrived on site at 0 Rinsate began at 0 Gallons of DI wate Left site at 093	920 r. R	Pum	and Garrin Pres ped 50 Gallons ended and Sam	of s	060	DI water and		

TW4-03R 08-28-2013 Do not touch this cell (SheetName)

ATTACHMENT 1-2

1	See	instruction
 100	000	mon denor.

WHITE MESA URAN FIELD DATA WORKSHEET F	Executive Contract Co
Description of Sampling Event: 3rd Quarter Chlor	· · · · · · · · · · · · · · · · · · ·
Location (well name): TWY-04	Sampler Name and initials: Tanner Holliday /TH
Field Sample ID	
Date and Time for Purging 9/3/2013 and	Sampling (if different)
Well Purging Equip Used: Dump or Dubailer	Well Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. V	Well Sampled in Sampling Event MW-04
pH Buffer 7.0 7.0 pH	H Buffer 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 117,00
Depth to Water Before Purging 68.04 Casing	y Volume (V) 4" Well: 28.70 (.653h) 3" Well: 0 (.367h)
Conductance (avg) Z303 pH of	Water (avg) 6.96
Well Water Temp. (avg) [16.9] Redox Potentia	al (Eh) Z68 Turbidity 3.0
Weather Cond. Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 1316 Gal. Purged O	Time Gal. Purged
Conductance 2303 pH 6.96	Conductance pH
Temp. °C 16.91	Temp. °C
Redox Potential Eh (mV) 2.68	Redox Potential Eh (mV)
Turbidity (NTU) 3.0	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged	0		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. $S/60 = 8.0$			Time to evac $T = 2V/Q =$		casing v	rolumes (2V)		
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample		e Taken	Sample Vol (indicate if other than as	Filte		Preservative Type		ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	ĬĎ.		3x40 ml		Ž	HCL	ď	
utrients	Ŋ		100 ml		Ď	H2SO4	Ě	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	ď		Sample volume		性			刭
If preservative is used, specify Type and Quantity of Preservative: nal Depth 72.44 Sample Time 1347 See instruction								
Samples collected a water was	Clean	Let?	t site at 1351. Pumping			collect samples		
	11 11	0.00						

TW4-04 09-03-2013

Do not touch this cell (SheetName)

FIELD DATA WORKSHEET F	
Description of Sampling Event: 3rd Quarter Chlor	rotorm 2013
	Sampler Name
Location (well name): TW4-05	and initials: Tanner Holliday TH
Field Sample ID TW4-05_09052013	
Date and Time for Purging 9/4/2013 and	Sampling (if different) 9/5/2013
Well Dissing Fourin Heads Dummer of Desiler W	Vell Pump (if other than Bennet)
Well Purging Equip Used: D pump or D bailer W	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. W	Vell Sampled in Sampling Event TWY-05R
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0
Specific Conductance 499 µMHOS/ cm	Well Depth(0.01ft): 120,00
Depth to Water Before Purging 59.42 Casing	Volume (V) 4" Well: 39.55 (.653h) 3" Well: 0 (.367h)
Conductance (avg) PH of V	Water (avg) 6.58
Well Water Temp. (avg) 15.55 Redox Potential	(Eh) 292 Turbidity 672
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) <u>るい</u>
Time [43] Gal. Purged 77	Time 1932 Gal. Purged 86
Conductance 1495 pH 6.58	Conductance 1500 pH 6.58
Temp. °C	Temp. °C \[\frac{15.55}{}
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 1433 Gal. Purged 99	Time 434 Gal. Purged 110
Conductance 1486 pH 6.58	Conductance 1490 pH 6.58
Temp. °C 15,59	Temp. °C ☐15.55
Redox Potential Eh (mV) 292	Redox Potential Eh (mV)
Turbidity (NTU) 675	Turbidity (NTU)

Salaria de la contra del la contra del la contra del la contra de la contra del la contra de la contra de la contra del la c								
Volume of Water Purged	110		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]		Time to evac $T = 2V/Q =$		casing v	rolumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	D				
If well evacuated to dryness	s, number	of gallons	s evacuated	0				
Name of Certified Analytica	al Labora	tory if Oth	ner Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	K		3x40 ml		图	HCL	K	
utrients	M		100 ml			H2SO4		
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	K		Sample volume		K			ď
Chloride						If preservative is used Type and Quantity of		ive:
nal Depth 60.36		Sample T	ime 0805]				 «
omment							instructio	
furged well for a to large ended at 1434 furived on site at 05	20. Tar stal of 1. Lef	oner and To mil	d Garrin present s nutes, water was at 1438	for pure	ge. Po Ky whit	rge began at	1424	
trrived on site at or	801	Tanner	and Garrin po	resent	to o	collect sample). Det	th
to water was 59.56	Sam	ples bo	ailed and collected	at o	305	Left site	at o	807

TW4-05 09-04-2013 Do not touch this cell (SheetName)

-0/	See instruction

Description of Sampling Event: 3rd Quarter Chloroform 2013
Sampler Name
Location (well name): TW4-05R and initials: Tanner Holliday/TH
Field Sample ID TW4-05 R_09042013
Date and Time for Purging 9/4/2013 and Sampling (if different)
Well Purging Equip Used: Dump or Dump or Well Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings
Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event TWY-06
pH Buffer 7.0 PH Buffer 4.0 4.0
Specific Conductance 499 µMHOS/ cm Well Depth(0.01ft):
Depth to Water Before Purging Casing Volume (V) 4" Well: O (.653h) 3" Well: O (.367h)
Conductance (avg) Z5.1 pH of Water (avg) (6.2)
Well Water Temp. (avg) 23.99 Redox Potential (Eh) 272 Turbidity O
Weather Cond. Partly Cloudy Ext'l Amb. Temp. °C (prior sampling event) 4 30° 30°
Time 1405 Gal. Purged 110 Time Gal. Purged
Conductance 25.1 pH 6.21 Conductance pH
Тетр. °С
Redox Potential Eh (mV) Redox Potential Eh (mV)
Turbidity (NTU) Turbidity (NTU)
Time Gal. Purged Gal. Purged Gal. Purged
Conductance pH Conductance pH
Temp. °C
Redox Potential Eh (mV) Redox Potential Eh (mV)
Turbidity (NTU) Turbidity (NTU)

Volume of Water Purged	15	,0	gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 11			Time to evac $T = 2V/Q =$		casing v	olumes (2V)		
Number of casing volumes	evacuated	i (if other	than two)	0				
If well evacuated to dryness	, number	of gallons	s evacuated	0				
Name of Certified Analytica	ıl Labora	tory if Oth	ner Than Energy Labs	AWAL	-			
Type of Sample	Sample Taken Sample Vol (indicate if other than as			ered	Preservative Type	Preservative Added		
	Y	N	specified below)	Y	N		Y	N
/OCs)\$I		3x40 ml		Ď	HCL	Č	
Jutrients			100 ml		Ď	H2SO4	ď	
leavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
Other (specify)	150	0	Sample volume		Ö			冶
Chloride	Chloride If preservative is used, specify Type and Quantity of Preservative:							
inal Depth O		Sample T	ime 1407					
Comment							instructio	
Acrived on site at 1354	. Rins	ate be	gan at 1355, Pums	ped 50	Gallon	S OF SMAD. DT	= unter	_
ond 100 (11 . C	D-	1.	20. 1	١	0	200.71	1 1	
Acrived on site at 1354 and 100 Gallons of Left site at 1410	₽. Þ.	water,	Kinsale ended	व्य ।५	08. Sø	imples collected	lat l	107.
TW4-05R 09-04-201	3 Do r	not touch t	this cell (SheetName)					

CFENERGY FUELS

19	See instruction

Description of Sampling Event: 3rd Quarter Ch	
Beschption of bumping Brents	Sampler Name
Location (well name): TW4-06	and initials: Tanner Holliday ITH
Field Sample ID TW4-06_09052013	
Date and Time for Purging 9/4/2013 and	Sampling (if different) 9/5/zoi3
Well Purging Equip Used: Dpump or D bailer W	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. V	Vell Sampled in Sampling Event TW4-26
pH Buffer 7.0 7.0 pH	I Buffer 4.0 4,0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 97.50
Depth to Water Before Purging 69.25 Casing	Volume (V) 4" Well: 18.44 (.653h) 3" Well: 0 (.367h)
Conductance (avg) PH of V	Water (avg) 6.75
Well Water Temp. (avg) Redox Potential	1 (Eh) 251 Turbidity 306
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 30°
Time 1347 Gal. Purged 25	Time Gal. Purged
Conductance 4004 pH 6.75	Conductance pH
Temp. °С [16.04]	Temp. °C
Redox Potential Eh (mV) 251	Redox Potential Eh (mV)
Turbidity (NTU) 306	Turbidity (NTU)
Time 0757 Gal. Purged 0	Time O758 Gal. Purged O
Conductance 4000 pH 6.11	Conductance 4006 pH 6.79
Temp. °C 15.63	Temp. °C [15.67]
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
-	۸ 📭

Groundwater Monitoring Quality Assurance	ce Plan (QAP)							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Volume of Water Purged	25		gallon(s)		И т е	٢		
Pumping Rate Calculation	<u>1</u>							
Flow Rate (Q), in gpm. $S/60 = 11$			Time to evac $T = 2V/Q =$	uate two	casing v	olumes (2V)		
Number of casing volume	s evacuated	d (if other	than two)	1.35				
If well evacuated to dryne	ss, number	of gallons	s evacuated	25				
Name of Certified Analyti	ical Labora	tory if Oth	ner Than Energy Labs	AWAI				
Type of Sample	Sampl	le Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	[A		3x40 ml		\(\bar{\lambda}\)	HCL	囟	
Nutrients	[2]		100 ml		X	H2SO4	Y	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	[2]		Sample volume		ĊΣI			Ø
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 95,45 Sample Time 0757								
See instruction								
Arrived on site at Purged well for a water was a little	1342 total of c dirty	Tanner if Z i Sand er and (minutes and 20 particles and light	of for Secon t brown collect	purg nds. P in co samp	e. Purge began lurged well dri lor. Purge enda	y at at sater	1345 1347 was
Arrived on site at 0752 Tanner and Garrin present to collect samples. Depth to water was 59,55 Samples bailed and collected at 0757 Left site at 0759								

TW4-06 09-04-2013 Do not touch this cell (SheetName)

FIELD DATA WORKSHEET F	10
Description of Sampling Event: 3rd Quarter Chlore	
	Sampler Name
Location (well name): TWY-07	and initials: Tanner Holliday /TH
Field Sample ID TW4-07_0912.2013	
Date and Time for Purging 9/11/2013 and	Sampling (if different) 9/12/2013
Well Purging Equip Used: Dump or Dumbailer	(ell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. W	Vell Sampled in Sampling Event Tw4-11
pH Buffer 7.0 PH	Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 120,00
Depth to Water Before Purging 65,20 Casing	Volume (V) 4" Well: 35.78 (.653h) 3" Well: 0 (.367h)
Conductance (avg) pH of V	Water (avg) 6,90
Well Water Temp. (avg) 14.98 Redox Potential	(Eh) 245 Turbidity 47
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 17°
Time 0936 Gal. Purged 66	Time Gal. Purged
Conductance 1574 pH 6.40	Conductance pH
Temp. °C 14.98	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0753 Gal. Purged 0	Time 0754 Gal. Purged 0
Conductance 1569 pH 6.83	Conductance 1567 pH 6.85
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

oundwater Monitoring Quality Assurance	Plan (QAP)							
Volume of Water Purged	66		gallon(s)		AF	iter		
Pumping Rate Calculation	6	6						
Flow Rate (Q), in gpm. S/60 = 1								
Number of casing volumes	evacuated	d (if other	than two)	1.84				
If well evacuated to dryness	, number	of gallons	evacuated	66				
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N		Y	N
OCs .	Y		3x40 ml		Ż	HCL	Ž	
lutrients	Ż		100 ml		IŽI	H2SO4	Ž	
leavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
Other (specify)	A		Sample volume		ď			凼
Chloride						If preservative is used Type and Quantity of		ive:

Final Depth 117, 95

See instruction

Arrived on site at 0928 Tanner and Garrin present to cotteet Purge well. Purge began at 0930. Purged well for 6 minutes. Purged well dry, water was mostly clear. Left site at 0938

0753

Arrived on site at 0749 Tanner and Garrin present to collect samples. Depth to water was 66.15 samples bailed at 0753 Left site at 0755

TW4-07 09-11-2013 Do not touch this cell (SheetName)

Sample Time

1	See instruction

Description of Sampling Event: 3rd Quarter Chlore	Carm 7013
Description of Sampling Event.	Sampler Name
Location (well name): TW4-08	and initials: Tanner Holliday 1774
Field Sample ID TW4-08_09052013	
Date and Time for Purging 9/4/2013 and	Sampling (if different) 9/5/2013
Well Purging Equip Used: Dpump or D bailer W	ell Pump (if other than Bennet) Grundfos
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. W	Vell Sampled in Sampling Event TWY-23
pH Buffer 7.0 7.0	Buffer 4.0 4.0
Specific Conductance 499 µMHOS/ cm	Well Depth(0.01ft): 125.00
Depth to Water Before Purging 65.04 Casing	Volume (V) 4" Well: 39.15 (.653h) (.367h)
Conductance (avg) 32.17 pH of V	Vater (avg) 6,83
Well Water Temp. (avg) 15.03 Redox Potential	(Eh) 140 Turbidity 257
Weather Cond.	Ext'l Amb. Temp. °C (prior sampling event) 17°
Time 0828 Gal. Purged 66	Time 0821 Gal. Purged 77
Conductance 3788 pH 6.83	Conductance 3274 pH 6.83
Тетр. °С 15.0Ч	Temp. °C \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Redox Potential Eh (mV)	Redox Potential Eh (mV) 140
Turbidity (NTU) 250	Turbidity (NTU)
Time 0830 Gal. Purged 88	Time 0831 Gal. Purged 49
Conductance 3276 pH 6.83	Conductance 3271 pH 6.89
Тетр. °С 15.0Ч	Temp. °C 15.03
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged 99 gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 1]		Time to evac $T = 2V/Q =$		casing v	olumes (2V)		
Number of casing volumes	evacuate	d (if other	than two)	0				
If well evacuated to dryness	s, number	of gallons	sevacuated	0				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	DE		3x40 ml		129	HCL	Ż	
utrients	X		100 ml		X	H2SO4	EZI	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)			Sample volume	0				Ø
Chloride If preservative is used, specify Type and Quantity of Preservative: Inal Depth 75.25 Sample Time 0710								
omment See instruction								
Arrived on site at 0820 Tanner and Garrin present for purge. Purge began at 0822. Purged well for 9 minutes. water was murky with a light white coloration. Purge ended at 0831. Left site at 0834 Arrived on site at 0706 Tanner and Garrin present to collect samples. Depth to water was 55.51 Samples bailed and collected at 0710 Left site at 0717								

TW4-08 09-04-2013 Do not touch this cell (SheetName)

	1	See	instruction
Ŀ	100	500	LILDUX GIOTICIA

FIELD DATA WORKSHEET FOR GROUNDWATER
Description of Sampling Event: 3rd Quarter Chloroform 2013
Location (well name): TWY-09 Sampler Name and initials: Tanner Holliday TH
Field Sample ID
Date and Time for Purging 9/4/2013 and Sampling (if different) 9/5/2013
Well Purging Equip Used: Dump or Dump bailer Well Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings
Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event TW4-08
pH Buffer 7.0 7.0 pH Buffer 4.0 4,0
Specific Conductance $\mu MHOS/cm$ Well Depth(0.01ft): 120,00
Depth to Water Before Purging 57.26 Casing Volume (V) 4" Well: 40.96 (.653h) 3" Well: 0 (.367h)
Conductance (avg) 2340 pH of Water (avg) 640
Well Water Temp. (avg) 15.06 Redox Potential (Eh) 307 Turbidity 299
Weather Cond. Partly Cloudy Ext'l Amb. Temp. °C (prior sampling event) 19°
Time 0922 Gal. Purged 66 Time 0923 Gal. Purged //
Conductance Z338 pH 6.40 Conductance Z341 pH 6.41
Temp. °C 15.06
Redox Potential Eh (mV) 308 Redox Potential Eh (mV) 307
Turbidity (NTU) Z95 Turbidity (NTU) Z90
Time 0924 Gal. Purged 88 Time 0925 Gal. Purged 99
Conductance Z340 pH 6.40
Temp. °C 15.06
Redox Potential Eh (mV) 307 Redox Potential Eh (mV) 306
Turbidity (NTU) 297 Turbidity (NTU)

Volume of Water Purged 99 gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm. $S/60 = 1$			Time to evac $T = 2V/Q =$		casing v	rolumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	0				
If well evacuated to dryness	, number	of gallons	s evacuated	0				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	×		3x40 ml			HCL	□ □	
Nutrients	Ø		100 ml		[2]	H2SO4	[2]	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	×		Sample volume		凶			X
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 75.50 Sample Time 6723 See instruction								
Arrived on site at 0912	2 ~	NACC OF	facility and	C. 2:	.car	Pucas bases o	+ 09	16
Purged well for a tot	al of	9 minu	ites water was	a litt	k Mu	rky with a w	nite co	loration
Proces ended at 0925								
Arrived on site at 071	18 T	anner an	d Garrin present	to co	llect.	samples Dept	h to vi	pater
was 57.32 samples	bailed	and	collected at 07:	23	Left	site at 07	ಚ	

TW4-09 09-04-2013 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL

Pescription of Sampling Event: 3rd Quarter Chi	
Description of Sampling Event: 3ra Quarter Chi	Sampler Name
Location (well name): TWY-10	and initials:
Field Sample ID TW4-10_09122013	
Date and Time for Purging 9/11/2013 and	Sampling (if different)
Well Purging Equip Used: pump or bailer W	ell Pump (if other than Bennet) Grundfos
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. W	Vell Sampled in Sampling Event TW4-21
pH Buffer 7.0 7.0 pH	Buffer 4.0
Specific Conductance 499 µMHOS/ cm	Well Depth(0.01ft): 111,00
Depth to Water Before Purging 57.61 Casing	Volume (V) 4" Well: 34.86 (.653h) (.367h)
Conductance (avg) pH of V	Vater (avg) 6.20
Well Water Temp. (avg) \[\lambda 5.03 \] Redox Potential	(Eh) 323 Turbidity 67
Weather Cond. Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 0824 Gal. Purged 52	Time Gal. Purged
Conductance 2569 pH 4.70	Conductance pH
Temp. °C 15.03	Temp. °C
Redox Potential Eh (mV) 323	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0723 Gal. Purged 0	Time 0724 Gal. Purged 0
Conductance 2418 pH 6.00	Conductance Z420 pH 6.03
Temp. °C	Temp. °C 14.47
Redox Potential Eh (mV) 2	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
2 2	A C1

Volume of Water Purged	se 52		gallon(s)	P	lfter			
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 1]		Time to evac $T = 2V/Q =$		casing v	olumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	1.49				
If well evacuated to dryness	s, number	of gallons	s evacuated	52				
Name of Certified Analytics	al Labora	tory if Oth	er Than Energy Labs	AWAL	o			
Type of Sample	Sample Taken		Sample Vol (indicate if other than as	e Filtered		Preservative Type	Preservative Added	
	Y	N	specified below)	Y	N		Y	N
OCs	Ø		3x40 ml		×	HCL	<u></u>	
utrients			100 ml		X	H2SO4		
eavy Metals			250 ml			HNO3		
Other Non Radiologics			250 ml			No Preserv.		

Chloride

If preservative is used, specify Type and Quantity of Preservative:

HNO3

Final Depth 109.34

Gross Alpha

Other (specify)

Sample Time 0723

1,000 ml

Sample volume

N

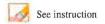
See instruction

П

X

Arrived on site at 0815 Tanner and Garrin present to purge well. Purge began at 0819. Purged well for a total of 4 minutes and 45 seconds. Purged well dry! Purge ended at 0824. Water was a little murky. Left site at 0827 Arrived on site at 0718 Tanner and Garrin present to collect samples. Depth to water was 57.77 Samples bailed at 0723 Left site at 0725

TW4-10 09-11-2013 Do not touch this cell (SheetName)


CF FERENCE SURLE

I E	0112
1.5	See instruction

Description of Sampling Event: 30d Quarter Chloro						
	Sampler Name					
Location (well name): TW4-II	and initials: Tanner Helliday / TH					
Field Sample ID TW4-11_04122013						
Date and Time for Purging 9/11/2013 and	Sampling (if different) 9/12/2013					
Well Purging Equip Used: Dipump or Dibailer Well	ell Pump (if other than Bennet) Grund fos					
Purging Method Used: 2 casings 3 casings						
Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event TW4-10						
pH Buffer 7.0 7.0 pH Buffer 4.0 L.O						
Specific Conductance 499 µMHOS/ cm	Well Depth(0.01ft): 100,00					
Depth to Water Before Purging 57.70 Casing Volume (V) 4" Well: 27.62 (.653h) 3" Well: 0 (.367h)						
Conductance (avg) 1625 pH of Water (avg) 6.64						
Well Water Temp. (avg) 14.49 Redox Potential (Eh) 303 Turbidity 13.76						
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)					
Time 0403 Gal. Purged 33	Time 0904 Gal. Purged 44					
Conductance 1622 pH 6.64	Conductance 1625 pH 6.65					
Temp. °C [4.50]	Temp. °C 14.49					
Redox Potential Eh (mV) 303	Redox Potential Eh (mV) 303					
Turbidity (NTU)	Turbidity (NTU) [13.5]					
Time 0405 Gal. Purged 55	Time 0906 Gal. Purged 66					
Conductance 1627 pH 6.65	Conductance 1627 pH 6, 65					
Temp. °C 14,48	Temp. °C [14.50					
Redox Potential Eh (mV) 303	Redox Potential Eh (mV) 303					
Turbidity (NTU)	Turbidity (NTU)					

Pumping Rate Calculation Flow Rate (Q), in gpm.		Nove II	Time to evac	nate two	casino	volumes (2V)		
S/60 = 11	1		T = 2V/Q =				- 10	
					714	-v - v -	4 20	
Number of easing volume	s evacuated	I (if other	than two)	0	_ لث	1000		12×10
If well evacuated to dryne	ss. number	of gallon	s evacuated	0			1	* 15° 11
	**************************************	200	r construction	I Ar II				1 - 2
Name of Certified Analyti	cal Labora	tory if Ot	her Than Energy Labs	AWAL			1.0	
	T		Sample Vol (indicate		15.			
Type of Sample	Sampl	e Taken	if other than as	Filtered		Preservative Type	Preservative Added	
Type of Sample	Y	N	specified below)	YN		Y	N	
/OCs	S		3x40 ml		×	HCL	Y	
Vutrients	囟		100 mi	KD S	团	H2SO4	1	
leavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Pross Alpha		- D	1,000 ml	v D		HNO3		
Other (specify)	Ŋ		Sample volume	20	Ø	16.	п	(2)
Chloride				× 8		If preservative is used Type and Quantity of		ive:
inal Depth 97.66		Sample T	ime 0747			See	instructio	n
Comment			- 17			. Hat .		1 1 3
Arrived on site at o								3
Purged well for a t Left site at ogog Arrived on site at 074	5. 1 1 m			PV N		and the second second		Was
	1 A	ici ariot		1 .	7010			
JIT IVER OIL SILE WI		747	1 11 cite	a] 0	149	, to 10 miles		1110
58.48 Samples bail	ed at o	137	Lell Dive		11, 12		The Table	7 7 7 7 1

Description of Sampling Event: 3rd Quarter Chl	proform 2013					
Sampler Name						
Location (well name): TW4-12 and initials: Tanner Holliday TH						
Field Sample ID TW4-12_08292013						
Date and Time for Purging 8/28/2013 and Sampling (if different) 8/29/2013						
Well Purging Equip Used: Dump or Dump bailer Well Pump (if other than Bennet)						
Purging Method Used: 2 casings 3 casings						
Sampling Event Quarterly Coloroform Prev. Well Sampled in Sampling Event TW4-03						
pH Buffer 7.0 7.0 pH Buffer 4.0 4,0						
Specific Conductance 999 µMHOS/ cm Well Depth(0.01ft): 101.50						
Depth to Water Before Purging 42.08 Casing Volume (V) 4" Well: 38.80 (.653h) 3" Well: 0 (.367h)						
Conductance (avg) pH of Water (avg) 7.13						
Well Water Temp. (avg) 15.03 Redox Potential (Eh) 260 Turbidity 3.1						
Weather Cond. Sunny Ext'l Amb. Temp. °C (prior sampling event) 21°						
Time 1030 Gal. Purged 55	Time 1031 Gal. Purged 64					
Conductance 1191 pH 7.12	Conductance 1190 pH 7,12					
Temp. °C \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Temp. °C 0 15.03					
Redox Potential Eh (mV) Z6Z	Redox Potential Eh (mV) 261					
Turbidity (NTU)	Turbidity (NTU)					
Time 1032 Gal. Purged 77	Time 1033 Gal. Purged 88					
Conductance 1189 pH 7,14	Conductance 1189 pH 7.14					
Temp. °C 15.04	Temp. °С 15,0Ч					
Redox Potential Eh (mV) 2-60	Redox Potential Eh (mV) 2.60					
Turbidity (NTU) 32	Turbidity (NTU) 3,2					

Volume of Water Purged	88		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 =	I		Time to evac $T = 2V/Q =$	vate two	casing	volumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	٥				
If well evacuated to dryness	, number	r of gallon	s evacuated	0				
Name of Certified Analytics	al Labora	tory if Oth	ner Than Energy Labs	AWAL				
Type of Sample		le Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type		ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	[Z]		3x40 ml		囟	HCL	X	
Nutrients	N		100 ml		Z	H2SO4	D	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	X		Sample volume		N			ÌΣΙ
Chloride		•		•		If preservative is used Type and Quantity of		ive:
Final Depth 61.25		Sample T	ime 0715					
Comment						162	instructio	
Arrived on site at 10	120	Tanner	and Garrin prese	nt for	pura	e. Purge bega	nat 1	025
Purged well for a t	otal o	of 8 m	inutes water wa	s cle	ar.	Purge ended a	+ 103	3.
Arrived on site at	0711	Tanner	and Garrin pre	SCUI	10 69	1 1 0016	. Dep	10 10
water was 42.11 sam	ples bo	alled and	collected at 0715	Le.	tt Si	ical Ullo		

TW4-12 08-28-2013 Do not to

Do not touch this cell (SheetName)

1	See	instruction

FIELD DATA WORKSHEET FO	
Description of Sampling Event: 3rd Quarter Chlo	Sampler Name
Location (well name): TW4-13	and initials: Tanner Holliday MI
Field Sample ID FW4-13_08 28 TW4-13_08 29 201	3 TW4-13_08292013
Date and Time for Purging 4/28/2013 and	Sampling (if different) 8/29/2013
Well Purging Equip Used: pump or bailer W	ell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. W	Vell Sampled in Sampling Event TW4-12
pH Buffer 7.0 7.0 pH	Buffer 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 102.50
Depth to Water Before Purging 47,30 Casing	Volume (V) 4" Well: 3664 (.653h) 3" Well: 6 (.367h)
Conductance (avg) pH of V	Vater (avg) 7.14
Well Water Temp. (avg) 15.32 Redox Potential	(Eh) 266 Turbidity 10.3
Weather Cond. Sunn 3	Ext'l Amb. Temp. °C (prior sampling event) 23°
Time \\\7.06 Gal. Purged \(55\)	Time Gal. Purged
Conductance 1754 pH 7.14	Conductance pH
Temp. °C [5.32]	Temp. °C
Redox Potential Eh (mV) Z66	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0720 Gal. Purged 0	Time 0722 Gal. Purged 0
Conductance 1735 pH 7.17	Conductance 1739 pH 7-17
Temp. °C 15.30	Temp. °C 15.36
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

oundwater Monitoring Quality Assurance I	Plan (QAP)								
Volume of Water Purged	55		gallon(s))		A	fer		
Pumping Rate Calculation									
Flow Rate (Q), in gpm. S/60 = 11				the to evacuate $2V/Q = $			volumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	[1.52				
If well evacuated to dryness	, number	of gallons	sevacuated	[55				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy	Labs [AWAL	•			
Type of Sample	Sampl	e Taken	Sample Vol (i		Filt	ered	Preservative Type	Preserv	ative Added
	Y	N	specified be	elow)	Y	N		Y	N
OCs	□□□		3x40 ml			□ □	HCL	4	
utrients	囟		100 ml				H2SO4	Ø	
eavy Metals			250 ml				HNO3		
ll Other Non Radiologics			250 ml				No Preserv.		
ross Alpha			1,000 ml				HNO3		
ther (specify)	Ø		Sample volume	e		NZ)			Ø
Chloride							If preservative is used Type and Quantity of		tive:
inal Depth 100,35		Sample T	ime 0721						
omment							1402	instructio	
Arrived on site at 1158 Purged Well for a to Purge ended at 1206 Arrived on site at 07	117 Ta	nner an	d Garrin pr	esont t	to colle	ect san	nples. Depth 10	t 120	Was
47,40 samples bail	ed and	collecte	ed at 072	1	Left.	site a	7 0723		

TW4-13 08-28-2013 Do not touch this cell (SheetName)

09	See	instruction

FIELD DATA WORKSHEET F	Value 45 - 280 Links 465 (100 Med 1 Links) / Address 100 Med 1 Links / Address 100 Med 1 Links (100 Med 1 Links) / Address 100 Med 1 Links (100 Med 1 Link
Description of Sampling Event: 3rd Quarter Chlore	oform 2013
	Sampler Name
Location (well name): TW4-14	and initials: Tanner Holliday (TH
Field Sample ID	
Date and Time for Purging 8/2x/2013 and	Sampling (if different) \$/29/2013
Well Purging Equip Used: Dpump or Dbailer W	Yell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chlorotorm Prev. W	Vell Sampled in Sampling Event TW4-13
pH Buffer 7.0 7.0	Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 93.00
Depth to Water Before Purging 85.36 Casing	Volume (V) 4" Well: 4.98 (.653h) 3" Well: 0 (.367h)
Conductance (avg) pH of V	Water (avg) 6.90
Well Water Temp. (avg) 1930 Redox Potential	(Eh) 269 Turbidity 98
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 26°
Time 1233 Gal. Purged 5.5	Time Gal. Purged
Conductance 4753 pH 6.90	Conductance pH
Temp. °C 19,30	T 0C
	Temp. °C
Redox Potential Eh (mV) 269	Redox Potential Eh (mV)
Redox Potential Eh (mV) 2.69 Turbidity (NTU) 48	·
	Redox Potential Eh (mV)
Turbidity (NTU)	Redox Potential Eh (mV) Turbidity (NTU)
Turbidity (NTU) 98 Time 0728 Gal. Purged o	Redox Potential Eh (mV) Turbidity (NTU) Time
Turbidity (NTU) Time O728 Gal. Purged o Conductance 1245 pH 7.15	Redox Potential Eh (mV) Turbidity (NTU) Time
Turbidity (NTU)	Redox Potential Eh (mV) Turbidity (NTU) Time

Groundwater Monitoring Quality Assurance F	Plan (QAP)							
Volume of Water Furges	5.5	5	gallon(s)		A++	re/		
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 11	ĺ		Time to evac $T = 2V/Q =$		casing v	volumes (2V)		
Number of casing volumes	evacuate	d (if other	than two)	1.10				
If well evacuated to dryness	, number	r of gallons	s evacuated	5.5				
Name of Certified Analytica	ıl Labora	atory if Oth	ner Than Energy Labs	AWA	-			
Type of Sample	Samp	le Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	Z		3x40 ml		A	HCL	ュ	
Nutrients			100 ml		Z)	H2SO4	D	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ø		Sample volume		D			每
Chloride						If preservative is use Type and Quantity of		tive:
Final Depth 91.34		Sample T	ime 0729					
Comment						100	instructio	
Arrived on site at 123	O Ta	anec and	Garrin present	For pu	rae.	Purcue benen	+ 1233	
0	1	0		1	0	J. Jan.	,	
Purged well for a to	ital o	f 30	Seconds, Purge	ed wel	dru	1. water	was m	urku
9- ENACH AT 1233	Let	- Site	at 1237					
Arrived on site at 07 was 85.58 samples	bailer	Tanner a	nd Garrin presen	t to	collect	Samples. De	pth to	water
39mples		, ,,,,,,,,	ITCICA AT 0129	Le	11 21	15 01 0121		

TW4-14 08-28-2013 Do not touch this cell (SheetName)

14	See instruction)

Description of Sampling Event: 3rd Quarter Chlor	
Description of damping 2001.	Sampler Name
Location (well name): MW-Z6	and initials: Tanner Holliday/TH
Field Sample ID	
Date and Time for Purging 9/3/2013 and	Sampling (if different)
Well Purging Equip Used: Dump or Dailer W	Tell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. W	Vell Sampled in Sampling Event TW4-20
pH Buffer 7.0 PH	Buffer 4.0
Specific Conductance 979 µMHOS/ cm	Well Depth(0.01ft): 122,50
Depth to Water Before Purging 63.30 Casing	Volume (V) 4" Well: 38.65 (.653h) (.367h)
Conductance (avg) pH of V	Water (avg) 6.95
Well Water Temp. (avg) 15.91 Redox Potential	(Eh) 236 Turbidity 1.5
Weather Cond. Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 324 Gal. Purged O	Time Gal. Purged
Conductance 3351 pH 6.95	Conductance pH
Temp. °C 15.97	Temp. °C
Redox Potential Eh (mV) 236	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

0		gallon(s)					
j		Time to evace $T = 2V/Q = $	uate two	casing v	rolumes (2V)		
evacuated	l (if other	than two)	0				
, number	of gallons	s evacuated	0				
al Labora	tory if Oth	er Than Energy Labs	AWA				
		Sample Vol (indicate if other than as			Preservative Type		ative Added
							N
					HNO3		
N N		Sample volume		ÌN			TÍ
					_	_	ive:
	Sample Ti	ime 1325	Ì		0	•	
					h-22		n
cted a	1325.	. Left site at 13	in Pr 328.	escnt	to collect san	nples.	
	evacuated in number al Laborated Sample Y Sample Sa	evacuated (if other of gallons al Laboratory if Other Sample Taken Y N D D D D D Sample Taken Y N D D D D D D D D Sample Taken Y N D D D D D D D D D D D D D D D D D	Time to evacuated T = 2V/Q = evacuated (if other than two) In number of gallons evacuated al Laboratory if Other Than Energy Labs Sample Taken Sample Vol (indicate if other than as specified below) Sample Taken Sample Vol (indicate if other than as specified below) Sample Tom Tom Sample Vol (indicate if other than as specified below) Sample Tom Sample Vol (indicate if other than as specified below) Sample Tom Sample Vol (indicate if other than as specified below) Sample Tom Sample Vol (indicate if other than as specified below) Sample Tom Sample Vol (indicate if other than as specified below) Sample Tom Laboratory if Other Than Energy Labs Sample Vol (indicate if other than as specified below) Sample Tom Sample Vol (indicate if other than as specified below) Sample Tom Laboratory if Other Than Energy Labs Sample Vol (indicate if other than as specified below) Sample Tom Sample Tom Sample Vol (indicate if other than as specified below) Laboratory if Other Than Energy Labs Sample Vol (indicate if other than as specified below) Sample Tom Laboratory if Other Than Energy Labs Sample Vol (indicate if other than as specified below) Sample Tom Laboratory if Other Than Energy Labs Sample Vol (indicate if other than as specified below) Sample Tom Sample Tom Laboratory if Other Than Energy Labs Sample Vol (indicate if other than as specified below) Sample Tom Laboratory if Other Than Energy Labs Sample Vol (indicate if other than as specified below) Sample Tom Laboratory if Other Than Energy Labs Sample Vol (indicate if other than as specified below) Sample Tom Laboratory if Other Than Energy Labs Sample Vol (indicate if other than as specified below) Sample Tom Laboratory if Other Than Energy Labs Sample Vol (indicate if other than as specified below) Laboratory if Other Than Energy Labs Sample Vol (indicate if other than as specified below) Laboratory if Other Than Energy Labs Sample Vol (indicate if other than as specified below) Laboratory if Other Than Ener	Time to evacuate two $T = 2V/Q = 0$ evacuated (if other than two) and Laboratory if Other Than Energy Labs Sample Taken Y N Sample Vol (indicate if other than as specified below) Y 3x40 ml 3x40 ml 3x40 ml 3x50 ml 3x40 ml 3x50 ml 3x40 ml 3x50 ml 3x40 ml 3x50 ml 3	Time to evacuate two casing v T = 2V/Q = 0 evacuated (if other than two) and Laboratory if Other Than Energy Labs Sample Taken Sample Vol (indicate if other than as specified below) N N Specified below) N N Specified below) N N Specified below) Sample Taken Sample Vol (indicate if other than as specified below) N N Specified below) Sample Time Sample Volume Sample Time Sample Volume The sample Time Taxon A Garrin Present Cted at 1318. Tanner and Garrin Present Cted at 1325. Left site at 1328.	Time to evacuate two casing volumes (2V) T = 2V/Q = 0 evacuated (if other than two) an unmber of gallons evacuated al Laboratory if Other Than Energy Labs Sample Taken Sample Vol (indicate if other than as specified below) N	Time to evacuate two casing volumes (2V) T = 2V/Q = D evacuated (if other than two) In number of gallons evacuated In laboratory if Other Than Energy Labs Sample Taken Sample Vol (indicate if other than as specified below) No specified below) No loom loom loom loom loom loom loom lo

MW-26 09-03-2013 Do not

Do not touch this cell (SheetName)

	Sec instruction
15 10 10 2	MAC INDEPATOR

Sampler Name and initials: Twnner Holldoy/TH Sield Sample ID Tw4-16_0905 Zo13 Date and Time for Purging 9/4/Zo13 and Sampling (if different) 9/5/2013 Well Purging Equip Used: pump or bailer Well Pump (if other than Bennet) Grandfos Purging Method Used: 2 casings 3 casings Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event Tw4-09 OF Buffer 7.0 7.0 pH Buffer 4.0 9.0 Specific Conductance 999 µMHOS/cm Well Depth(0.01ft): 142.00 Depth to Water Before Purging 61.29 Casing Volume (V) 4" Well: 52.73 (.653h) 3" Well: 0 (.367h) Conductance (avg) 3496 pH of Water (avg) 6.40 Well Water Temp. (avg) 14.95 Redox Potential (Eh) 180 Turbidity 32 Weather Cond. Party Cloudy Time 0956 Gal. Purged 109 Time 0956 Gal. Purged 109 Time 0957 Gal. Purged 120
Date and Time for Purging 9/4/2013 and Sampling (if different) 9/5/2013 Well Purging Equip Used:
Date and Time for Purging 9/4/2013 and Sampling (if different) 9/5/2013 Well Purging Equip Used: pump or bailer Well Pump (if other than Bennet) Grandfo's Purging Method Used: 2 casings Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event Twy-09 PH Buffer 7.0 7.0 pH Buffer 4.0 4.0 Specific Conductance 949 µMHOS/cm Well Depth(0.01ft): 142.00 Depth to Water Before Purging 61.24 Casing Volume (V) 4" Well: 52.73 (.653h) 3" Well: 0 (.367h) Conductance (avg) 3494 pH of Water (avg) 6.40 Well Water Temp. (avg) 14.95 Redox Potential (Eh) 180 Turbidity 32 Weather Cond. Party Cloudy Ext'l Amb. Temp. °C (prior sampling event) 21°
Well Purging Equip Used: Deput pump or Dealer Well Pump (if other than Bennet) Purging Method Used: Deput Chloroform Prev. Well Sampled in Sampling Event TW4-04 Ph Buffer 7.0 7.0 pH Buffer 4.0 4.0 Specific Conductance 999 ph MHOS/cm Well Depth(0.01ft): 142.00 Depth to Water Before Purging 61.24 Casing Volume (V) 4" Well: \$2.73 (.653h) 3" Well: 0 (.367h) Conductance (avg) 3496 pH of Water (avg) 6.40 Well Water Temp. (avg) 14.95 Redox Potential (Eh) 180 Turbidity 32 Weather Cond. Party Cloudy Ext'l Amb. Temp. *C (prior sampling event) 21°
Purging Method Used: 2 casings 3 casings Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event TWY-09 PH Buffer 7.0 7.0 pH Buffer 4.0 Y.6 Specific Conductance 999 µMHOS/cm Well Depth(0.01ft): 142.00 Depth to Water Before Purging 61.24 Casing Volume (V) 4" Well: 52.73 (.653h) 3" Well: 0 (.367h) Conductance (avg) 3494 pH of Water (avg) 6.40 Well Water Temp. (avg) 14.95 Redox Potential (Eh) 180 Turbidity 32 Weather Cond. Party Cloudy Ext'l Amb. Temp. "C (prior sampling event) 21°
Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event TWY-09 PH Buffer 7.0 7.0 pH Buffer 4.0 Y.0 Specific Conductance 999 puMHOS/cm Well Depth(0.01ft): 142.00 Depth to Water Before Purging 61.24 Casing Volume (V) 4" Well: 52.73 (.653h) 3" Well: 0 (.367h) Conductance (avg) 3494 pH of Water (avg) 6.40 Well Water Temp. (avg) 14.95 Redox Potential (Eh) 180 Turbidity 32 Weather Cond. Partly Cloud f Ext" Amb. Temp. °C (prior sampling event) 21°
pH Buffer 7.0 7.0 pH Buffer 4.0 y.0 Specific Conductance 999 µMHOS/cm Well Depth(0.01ft): 192.00 Depth to Water Before Purging 61.29 Casing Volume (V) 4" Well: 52.73 (.653h) 3" Well: 0 (.367h) Conductance (avg) 3994 pH of Water (avg) 6.90 Well Water Temp. (avg) 19.95 Redox Potential (Eh) 180 Turbidity 32 Weather Cond. Party Cloudy Ext'l Amb. Temp. °C (prior sampling event) 21°
Specific Conductance 999 µMHOS/cm Well Depth(0.01ft): 142.00 Depth to Water Before Purging 61.24 Casing Volume (V) 4" Well: 52.73 (.653h) 3" Well: 0 (.367h) Conductance (avg) 3496 pH of Water (avg) 6.90 Well Water Temp. (avg) 14.95 Redox Potential (Eh) 180 Turbidity 32 Weather Cond. Party Cloudy Ext'l Amb. Temp. °C (prior sampling event) 21°
Conductance (avg) 3496 pH of Water (avg) 6.40 Well: 52.73 (.653h) 3" Well: 0 (.367h) Well Water Temp. (avg) 14.95 Redox Potential (Eh) 180 Turbidity 32 Weather Cond. Partly Cloudy Ext'l Amb. Temp. °C (prior sampling event) 21°
3" Well: 0 (.367h) Conductance (avg) 3494 pH of Water (avg) 6.40 Well Water Temp. (avg) 14.95 Redox Potential (Eh) 180 Turbidity 32 Weather Cond. Partly Cloudy Ext'l Amb. Temp. °C (prior sampling event) 21°
Well Water Temp. (avg) 14.95 Redox Potential (Eh) 180 Turbidity 32 Weather Cond. Partly Cloudy Ext'l Amb. Temp. °C (prior sampling event) 21°
Weather Cond. Partly Cloudy Ext'l Amb. Temp. °C (prior sampling event) 21°
Fartly Cloudy
Time 0956 Gal. Purged 109 Time 0957 Gal. Purged 120
Conductance 3499 pH 6.41 Conductance 3499 pH 6.39
Cemp. °C 14.96 Temp. °C 14.95
Redox Potential Eh (mV) 179 Redox Potential Eh (mV) 181
Turbidity (NTU) 30 Turbidity (NTU) 32
Time 0958 Gal. Purged 121 Time 0959 Gal. Purged 132
Conductance 3494 pH 48 Conductance 3495 pH 6.41
emp. °C 14.94 6.41 Temp. °C 14.95
tedox Potential Eh (mV) 81 Redox Potential Eh (mV) 182
Turbidity (NTU) 33 Turbidity (NTU) 33

Volume of Water Purged Pumping Rate Calculation	132		gallon(s)					
rumping Rate Calemation								
Flow Rate (Q), in gpm.	1				casing v	volumes (2V)		
S/60 =			T = 2V/Q =	9.58				
Number of casing volumes	evacuated	(if other	than two)	0				
If well evacuated to drynes	s, number	of gallon	s evacuated	0				
Name of Certified Analytic	al Labora	tory if Otl	her Than Energy Labs	AWAL				
	Constant	a Tulean	Sample Vol (indicate	Tribe	-mad		Dracorro	ativo Addad
Type of Sample	Sampl	e Taken	if other than as	FH	ered	Preservative Type	Preserva	ntive Added
	Y	N	specified below)	Y	N		Y	N
/OCs			3x40 ml		□ □	HCL	(XI	
Nutrients	N		100 ml		N.	H2SO4	X	
leavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	S		Sample volume		Ń			N
Chloride						If preservative is used Type and Quantity of		ive:
Final Depth 137,91]	Sample 1	ime 0729			Sec	instructio	on.
Comment						1.69		
Arrived on site at 0944 at 0947. Purged we Purge ended at 0959 Arrived on site at 072	ell tor . Left	a tot	at 1003	s, wat	cr			
61.55 Samples by	ited and	collect	ted at 0729	Left	5.7	e at 0731	10 000	
	Do r	not touch	this cell (SheetName)					

1	See	instruction
-57	See	instruction

Description of Sampling Event: 300 Quarter Chlo	
Description of Sampling Event.	Sampler Name
Location (well name): MW-32	and initials: Tanner Holliday /TH
Field Sample ID	
Date and Time for Purging 9/4/2013 and	Sampling (if different)
Well Purging Equip Used: Dump or Dubailer W	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	r
Sampling Event Quarterly Chlorotorm Prev. W	Vell Sampled in Sampling Event
pH Buffer 7.0 pH	Buffer 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 132.50
Depth to Water Before Purging 74.04 Casing	Volume (V) 4" Well: 38.17 (.653h) (.367h)
Conductance (avg) pH of V	Water (avg) [6.6]
Well Water Temp. (avg) 15,09 Redox Potential	(Eh) 176 Turbidity 9
Weather Cond. Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 14°
Time (237) Gal. Purged 77 46	Time [236] Gal. Purged 7.68
Conductance 3864 pH 6.73	Conductance 3850 pH 6.6/
Temp. °C 15.08	Temp. °C [15.09]
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 1.239 Gal. Purged 77.90	Time 7290 Gal. Purged 78.17
Conductance 3856 pH 6.59	Conductance 3845 pH 6.53
Temp. °C 15.09	Temp. °C 15,10
Redox Potential Eh (mV)	Redox Potential Eh (mV) 176
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged	78.	17	gallon(s)						
Pumping Rate Calculation									
Flow Rate (Q), in gpm. S/60 = 2.7									
Number of casing volumes of	evacuate	d (if other	than two)	0					
If well evacuated to dryness	, numbei	of gallons	sevacuated	٥					
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWAL					
Type of Sample		le Taken	Sample Vol (indicate if other than as	Filte		Preservative Type		ative Added	
	Y	N	specified below)	Y	N		Y	N	
VOCs	[3]		3x40 ml		[X]	HCL	D		
Nutrients	7		100 ml		卬	H2SO4	Ø		
Heavy Metals			250 ml			HNO3			
All Other Non Radiologics			250 ml			No Preserv.			
Gross Alpha			1,000 ml			HNO3			
Other (specify)	DZÍ.		Sample volume		N			59	
If preservative is used, specify Type and Quantity of Preservative:									
Final Depth 78.96 Sample Time 1246 See instruction									
Comment									
Arrived on site at or	635	Tanner	and Garrin presen	nt fo	or pur	ge and samp	ling ev	ent.	
Turge began at 06	40.	Turged	well tor a to	Tal o	360	o minutes.			
water was a little	bou cl	0	the light bro	own /	place	tion			
Purge began at 06 water was a little Purge ended at	124	D. Let	7 site at 12	246	01014	110-1			

MW-32 09-04-2013 Do not touch this cell (SheetName)

1	See instruction
-63	See msu action

Description of Sampling Event: 3rd Quarter Chlo	
Description of Sampling Event.	Sampler Name
Location (well name): TWY-18	and initials: Tanner Holliday (77)
Field Sample ID TW4-18_09052013	
Date and Time for Purging 9/4/2013 and	Sampling (if different) 9/5/2013
Well Purging Equip Used: Dpump or Dbailer W	Tell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. W	Vell Sampled in Sampling Event TW4-05
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0
Specific Conductance 499 µMHOS/ cm	Well Depth(0.01ft): \[\frac{137.50}{}
Depth to Water Before Purging 60.15 Casing	Volume (V) 4" Well: 50.50 (.653h) 3" Well: 0 (.367h)
Conductance (avg) pH of V	Vater (avg) 6,40
Well Water Temp. (avg) 15.64 Redox Potential	(Eh) 299 Turbidity 526
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 316
Time So3 Gal. Purged 88	Time Gal. Purged 99
Conductance 1651 pH 6.38	Conductance 1648 pH 6.42
Temp. °C 15.65	Temp. °C \(\bigcap_{15.65}\)
Redox Potential Eh (mV) 301	Redox Potential Eh (mV) 299
Turbidity (NTU) 520	Turbidity (NTU) 529
Time 1505 Gal. Purged 110	Time T506 Gal. Purged [12]
Conductance 1630 pH 6.97	Conductance GII pH G.40
Temp. °C 15.65	Temp. °C 15.64
Redox Potential Eh (mV) 298	Redox Potential Eh (mV) Z98
Turbidity (NTU)	Turbidity (NTU) 5Z1

Volume of Water Purged	121		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V) $T = 2V/Q = 9.18$								
Number of casing volumes	evacuated	d (if other	than two)	D				
If well evacuated to dryness	, number	of gallons	sevacuated	0				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample		e Taken	Sample Vol (indicate if other than as		ered	Preservative Type		ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	K		3x40 ml		旭	HCL	Ŋ	
utrients	F		100 ml		Ď	H2SO4	Ď	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	T		Sample volume	D	Ť			ď
If preservative is used, specify Type and Quantity of Preservative:								
nal Depth 68.61 Sample Time 0815								
omment See instruction								
Arrived on site at 1453 Tanner and Garrin Present for purge. Purge began at 1455								
Purged well for a total of 11 minutes, water was								
Purge ended at 1506, Left site at 1510								
Things entires at 120	, 20	ر. م	1 0	1 4-	-11-1	Samples O	21. 2	- water
drrived on site at 081	0 T	anner an	d Garrin present	7 70 0	ואפכו	samples. U	Sbin 1	o ward
Das 60,25 Samples	bailed	and c	ollected at Oxic	1	Ac	7 27 0817		
Das 60.25 samples bailed and collected at 0815 Left site at 0817								

Do not touch this cell (SheetName)

TW4-18 09-04-2013

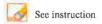
4	
	See instruction

Description of Sampling Event: 3rd Quarter Chlo	
Description of Sampling Event: 3rd Quarter Chlo	Sampler Name
Location (well name): Tw4-19	and initials: Tonner Holliday
Field Sample ID TW4-19_09032013	
Date and Time for Purging 9/3/2013 and	Sampling (if different)
Well Purging Equip Used: pump or bailer W	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chlorotorm Prev. W	Vell Sampled in Sampling Event TW4-30
pH Buffer 7.0 7.0 pH	Buffer 4.0
Specific Conductance 499 µMHOS/ cm	Well Depth(0.01ft): 125.00
Depth to Water Before Purging 59, 22 Casing	Volume (V) 4" Well: 42.94 (.653h) 42.95 3" Well: 0 (.367h)
Conductance (avg) 3205 pH of V	Water (avg) 6.80
Well Water Temp. (avg) 16.15 Redox Potential	Turbidity 6
Weather Cond. Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time Ols Gal. Purged O	Time Gal. Purged
Conductance 3205 pH 6.80	Conductance pH
Temp. °C [16.15]	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged	0		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 14.0]		Time to evac $T = 2V/Q = $		casing v	olumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	0				
If well evacuated to dryness	, number	of gallons	s evacuated	٥				
Name of Certified Analytica	al Labora	tory if Oth	ier Than Energy Labs	AWAL				
Type of Sample	Sampl	le Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N	1	Y	N
OCs	KÍ		3x40 ml		Ď	HCL		
utrients	Ď		100 ml		卢	H2SO4	Ď	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	也	0	Sample volume		也			Ø
If preservative is used, specify Type and Quantity of Preservative:								
inal Depth 75.97								
omment See instruction								
Arrived on site at 102	3. Tai	nner and	A Garrin present	to coll.	ect so	amples.		
Arrived on site at 1023. Tanner and Garrin present to collect samples. Samples collected at 1030, water was clear								
-cft site at 1033		Λ.						
Continuous Pumping Well								

TW4-19 09-03-2013 Do not

Do not touch this cell (SheetName)


19	See	instruction
19	See	instruction

Description of Sampling Event: 3rd Quarter Chlore	
Description of Sampling Event.	Sampler Name
Location (well name): TW4-20	and initials: Tanner Holliday /TH
Field Sample ID TW4-20_09032013	
Date and Time for Purging 9/3/2013 and S	Sampling (if different)
Well Purging Equip Used: Dump or Dailer We	ell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. W	Vell Sampled in Sampling Event TW4-22
pH Buffer 7.0 7.0 pH	Buffer 4.0 4,0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 106,00
Depth to Water Before Purging 61.30 Casing	Volume (V) 4" Well: Z9.18 (.653h) 3" Well: b (.367h)
Conductance (avg) pH of W	Vater (avg) C.97
Well Water Temp. (avg) 17.07 Redox Potential	(Eh) 225 Turbidity 4.0
Weather Cond. Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 1314 Gal. Purged 0	Time Gal. Purged
Conductance 3960 pH 6.97	Conductance pH
Temp. °C 17.07	Temp. °C
Redox Potential Eh (mV) 225	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged	0		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 9.6	l		Time to evac $T = 2V/Q = $	uate two	casing v	olumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	0				
If well evacuated to dryness	s, number	of gallons	s evacuated	Ō				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sampl	le Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N		Y	N
OCs .	四		3x40 ml		囟	HCL	Q	
lutrients	Ď.		100 ml		□ ∄	H2SO4	Ѝ	
leavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Fross Alpha			1,000 ml			HNO3		
ther (specify)	[3]		Sample volume		E	_		Ø
Chlor: Je						If preservative is used Type and Quantity of		
inal Depth G4.99		Sample Ti	ime 1315.					
Comment							instructio	on
Arrived on site at	1309	. Tani	ner and Garrin F	resent	to c	iollect sample	S.	
Samples collecti water was clea	ed at						-	
Contin	nu ou (c P.	moing Well					_

TW4-20 09-03-2013 Do not touch this cell (SheetName)

Description of Sampling Event: 3rd Quarter chloro	Form 2013
	Sampler Name
Location (well name): TWY-21	and initials: Tanner Holliday /TH
Field Sample ID TW4-21_09122013	
Date and Time for Purging 9/11/2013 and	Sampling (if different) 9/12/2013
Well Purging Equip Used: Dpump or D bailer W	Yell Pump (if other than Bennet)
Purging Method Used: 2 casings 2 casings	
Sampling Event Quarter y Chloroform Prev. W	Vell Sampled in Sampling Event TW4-29
pH Buffer 7.0 pH	Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 121.00
Depth to Water Before Purging 59.75 Casing	Volume (V) 4" Well: 39.99 (.653h) 3" Well: 8 (.367h)
Conductance (avg) 9792 pH of V	Water (avg) 6.76
Well Water Temp. (avg) Redox Potential	(Eh) 291 Turbidity 6.6
Weather Cond. \(\(\) \	Ext'l Amb. Temp. °C (prior sampling event) 1ん°
Time 0135 Gal. Purged 66	Time 073C Gal. Purged 77
Time Time Gai. Fulged	Time Gai. Furged 77
Conductance 3784 pH 6.75	Conductance 3790 pH 6.83
Temp. °C [6.1]	Temp. °C 16.10
Redox Potential Eh (mV) 291	Redox Potential Eh (mV) Z91
Turbidity (NTU)	Turbidity (NTU)
Time 0731 Gal. Purged 88	Time Gal. Purged 99
Conductance 3802 pH 6.74	Conductance 3795 pH 6-75
Temp. °C	Temp. °C 16.10
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged	99		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 =			Time to evac $T = 2V/Q =$	7.27	casing v	olumes (2V)		
Number of casing volumes	evacuated	l (if other i	than two)	0				
If well evacuated to dryness	, number	of gallons	evacuated	Ø				
Name of Certified Analytics	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	[Y]		3x40 ml		X	HCL	Ø	
utrients	凶		100 ml		X	H2SO4	X	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	ĽΣ		Sample volume		Œ			Ø
Chloride						If preservative is used Type and Quantity of		tive:
nal Depth 68.50		Sample Ti	ime 0711					
omment						See	instructio	on
Arrived on site at or Purged well for a t Left site at 0740	725 - otal or)	Sanner of	and Garrin present ninutes, water wa	nt for	r pur	gc. Purge beauty	o738.	0729
Acrived on site ato		Tanner	and Garrin prese	int to	collec	t samples. D	epth	to Water
200 59.80 SAMPI								

TW4-21 09-11-2013

Do not touch this cell (SheetName)

Description of Sampling Event: 3rd Quarter Chloroform 2013
Sampler Name
Location (well name): TW4-ZZ and initials: Tanner Holliday HTH
Field Sample ID
Date and Time for Purging 9/3/2013 and Sampling (if different)
Well Purging Equip Used: Dump or Dubailer Well Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings
Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event TW4-24
pH Buffer 7.0 PH Buffer 4.0 4.0
Specific Conductance 499 µMHOS/ cm Well Depth(0.01ft): 13,50
Depth to Water Before Purging 57.50 Casing Volume (V) 4" Well: 36.56 (.653h) 3" Well: 3 (.367h)
Conductance (avg) 6097 pH of Water (avg) 6.94
Well Water Temp. (avg) 17, 16 Redox Potential (Eh) 754 Turbidity 05
Weather Cond. Cloudd Ext'l Amb. Temp. °C (prior sampling event) 27°
Time 1304 Gal. Purged O Time Gal. Purged
Conductance 6097 pH 6.94 Conductance pH
Гетр. °С 17-10 Тетр. °С
Redox Potential Eh (mV) Redox Potential Eh (mV) Redox Potential Eh (mV)
Turbidity (NTU) Turbidity (NTU)
Time Gal. Purged Gal. Purged
Conductance pH Conductance pH
Temp. °C
Redox Potential Eh (mV) Redox Potential Eh (mV)
Turbidity (NTU) Turbidity (NTU)

Volume of Water Purged	٥		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 3,50	ĺ		Time to evac $T = 2V/Q =$		casing v	rolumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	٥				
If well evacuated to dryness	, number	of gallons	s evacuated	0				
Name of Certified Analytica	ıl Labora	tory if Oth	ner Than Energy Labs	AWAL				
Type of Sample	Sampl	le Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
/OCs	Ŋ		3x40 ml		Ž	HCL	Z	
Nutrients	ZĮ.		100 ml		Ď	H2SO4	Ž	
leavy Metals			250 ml			HNO3		
All Other Non Radiologies			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	ĽÚ.		Sample volume		Ţ.			ď
Chloride						If preservative is used Type and Quantity of		ive:
Sample Time 1305 See instruction								
Arrived on site at 12	59 T.	Annel an	d Garrin Pront.	In no	+	collect samo).	- <	
Samples collected at							3.	
			. 1					
Contin	uous	Pun	nping Well	-				

Do not touch this cell (SheetName)

TW4-22 09-03-2013

ATTACHMENT 1-2 WHITE MESA URANIUM MILL

Description of Sampling Event: 3rd Quarter Chloroform 2013
Sampler Name
Location (well name): TW4-23 and initials: Tanner Holliday ITH
Field Sample ID TW4-23_09052013
Date and Time for Purging 9/4/2013 and Sampling (if different) 9/5/2013
Well Purging Equip Used: pump or bailer Well Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings
Sampling Event Quarter & Chlorotorm Prev. Well Sampled in Sampling Event TW4-31
pH Buffer 7.0 pH Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm Well Depth(0.01ft): 114.00
Depth to Water Before Purging 64.40 Casing Volume (V) 4" Well: 32.38 (.653h) 3" Well: 0 (.367h)
Conductance (avg) 3652 pH of Water (avg) 6.17
Well Water Temp. (avg) 4,35 Redox Potential (Eh) 208 Turbidity 69
Weather Cond. Cloudd Ext'l Amb. Temp. °C (prior sampling event) 16°
Time 0753 Gal. Purged 55 Time 0754 Gal. Purged 66
Conductance 3663 pH 6.21 Conductance 3659 pH 6.16
Temp. °С [Ч.35] Теmp. °С [Ч.36]
Redox Potential Eh (mV) Z01 Redox Potential Eh (mV) Z07
Turbidity (NTU) Turbidity (NTU) 71
Time 0755 Gal. Purged 77 Time 0754 Gal. Purged 88
Conductance 3645 pH 6.15 Conductance 3644 pH 6.17
Temp. °C 14.36
Redox Potential Eh (mV) 211 Redox Potential Eh (mV) 23
Turbidity (NTU) 67 Turbidity (NTU)

Volume of Water Purged	88		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 =]		Time to evac $T = 2V/Q =$	uate two	casing v	volumes (2V)		
Number of casing volumes	evacuated	J (if other	than two)	0				
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytica	al Labora	tory if Oth	ner Than Energy Labs	AWAL				
Type of Sample		Sample Vol (indicate if other than as		Filte		Preservative Type		ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	N		3x40 ml		E	HCL	Ø	
utrients	10		100 ml		户	H2SO4	Ě	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)			Sample volume		D			
Chloride						If preservative is used Type and Quantity of		tive:
nal Depth &4.50		Sample Ti	ime 0704	ĺ		See	instructio	on
omment						hick.		
Arrived on site at o	145 7	Tanner a	and Garrin presen	it for	Durge	· Purne begar	at c	5748
Purged well for a Purge ended at 075	total	ot 8 r A site	ninutes. Water ha	d a sli	ght or	ange coloration		
Arrived on site at 06! was 64.48 Samples								water
Das - 11 to Dent pies	000	(00,10		•	Salva and			

TW4-23 09-04-2013 Do not touch this cell (SheetName)

N	See instruction
1000	T. I.S. POPER DESIGNATION

Description of Sampling Event: 3rd Quarter Chlo	
Description of Sampling Event: 3rd Quarter Chlo	
Location (well name): TWY-24	Sampler Name and initials: Tanner Holliday (TI)
Location (wen name): 1 W 4 24	and initials: Tanner Holliday (TI)
Field Sample ID TWY-ZY_0903Z013	
Date and Time for Purging 9/3/2013 and	Sampling (if different)
Well Purging Equip Used: Dpump or D bailer W	ell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. W	Vell Sampled in Sampling Event
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 112.50
Depth to Water Before Purging 65.70 Casing	Volume (V) 4" Well: 30.56 (.653h) (.367h)
Conductance (avg) 8247 pH of V	Water (avg) 6.73
Well Water Temp. (avg) [17.1] Redox Potential	(Eh) 254 Turbidity O
Weather Cond. Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 1254 Gal. Purged 3	Time Gal. Purged
Conductance 8247 pH C.73	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV) 254	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged	0)	gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. $S/60 = \boxed{18.9}$			Time to evac $T = 2V/Q = 1$		casing v	volumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	0				
If well evacuated to dryness	, number	of gallons	s evacuated	۵				
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWAI	_			
Type of Sample		le Taken	Sample Vol (indicate if other than as	Filte		Preservative Type		ative Added
	Y	N	specified below)	Y	N		Y	N
/OCs	百		3x40 ml		Ā	HCL	X	
Vutrients	Ó		100 ml		T	H2SO4	Ď	
leavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	P		Sample volume		ď		io_	K
Chloride						If preservative is used Type and Quantity of		ive:
Final Depth 68.13		Sample T	ime 12.55	l		See See	instructio	on
712	a —	1	Guis occept to	called	Cana-1			
Arrived on site at 124	8. IAM	ncr and	Garrin Piesens 10	Collect	Jamp/	- 5.		
samples collected at 12	.55. La	off site	At 1257. Water 4	sas c	lear			
Con	ntinua	ous !	Pumping W	ell				

Do not touch this cell (SheetName)

TW4-24 09-03-2013

Description of Sampling Event: 3rd Quarter Chlore	
Description of Sampling Event: 3rd Quarter Chlore	
Location (well name): TW4-25	Sampler Name and initials:
Field Sample ID Twy - 25_ 0903 Z013	
Date and Time for Purging 4/3/2013 and Sar	ampling (if different)
Well Purging Equip Used: D pump or D bailer Well	Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. Well	Il Sampled in Sampling Event
pH Buffer 7.0 pH Bu	uffer 4.0 4.0
Specific Conductance 919 µMHOS/ cm	Well Depth(0.01ft): 134.80
Depth to Water Before Purging 65.90 Casing Vo	olume (V) 4" Well: 44.99 (.653h) 3" Well: 0 (.367h)
Conductance (avg) PH of Wat	ter (avg) 7.27
Well Water Temp. (avg) [16.97] Redox Potential (E	Eh) 275 Turbidity 0.8
Weather Cond.	Ext'l Amb. Temp. °C (prior sampling event) Z7°
Time 1239 Gal. Purged 5	Time Gal. Purged
Conductance Z895 pH 7.27	Conductance pH
Temp. °C 16.97	Temp. °C
Redox Potential Eh (mV) 275	Redox Potential Eh (mV)
Turbidity (NTU)	Furbidity (NTU)
Time Gal. Purged T	Time Gal. Purged
Conductance pH C	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged	0		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V) $T = 2V/Q = 0$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample		e Taken	Sample Vol (indicate if other than as	Filtered Preservative Type			Preservative Added	
	Y	N	specified below)	Y	N		Y	N
OCs	Ā		3x40 ml		T	HCL	ř	
utrients	E		100 ml		È	H2SO4	Ď	
eavy Metals			250 ml			HNO3		
Il Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
other (specify)	ř	0	Sample volume		K			內
Chlorida If preservative is used, specify Type and Quantity of Preservative:								
Sample Time 1240 See instruction								
Arrived on site at 123:	3 Tann	er and	Garcia Present to	collect	Samo)es.		
samples collected at	1240	WATO	er was clear	Lett	SITC G	1 1242		
Con	tinuo	us f	Sumping Well					

Do not touch this cell (SheetName)

TW4-25 09-03-2013

-		
1	See	instruction

Description of Sampling Event: 3rd Quarter Chlore	
	Sampler Name
Location (well name): TW4-Z6	and initials: Tanner Holliday /TH
Field Sample ID	
Date and Time for Purging 9/4/2013 and	Sampling (if different) 9/5/zol3
Well Purging Equip Used: Dpump or D bailer W	Tell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Ouarterly Chloroform Prev. V	Vell Sampled in Sampling Event TWリール
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 86.00
Depth to Water Before Purging 62.86 Casing	Volume (V) 4" Well: [5.1] (.653h) 3" Well: 0 (.367h)
Conductance (avg) 6405 pH of V	Vater (avg) 4,00
Well Water Temp. (avg) 15.76 Redox Potential	(Eh) 442 Turbidity 75
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 23°
Time 1029 Gal. Purged 18	Time Gal. Purged
	Time Gail Turged
Conductance 6405 pH 4.00	Conductance pH
Temp. °C 15.76	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU) 75	Turbidity (NTU)
Time O74) Gal. Purged O	Time 0749 Gal. Purged 0
Conductance 6307 pH 4.22	Conductance 6297 pH 4.25
Тетр. °С	Temp. °C 16.00
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

roundwater Monitoring Quality Assurance I	lan (QAP)							
Volume of Water Furged 18 gallon(s) After								
Pumping Rate Calculation								
Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V) S/60 = 11 $T = 2V/Q = 2.74$								
Number of casing volumes	evacuated	d (if other	than two)	1.25				
If well evacuated to dryness	, number	of gallons	sevacuated	18				
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample		le Taken	Sample Vol (indicate if other than as	Filte		Preservative Type		ative Added
	Y	N	specified below)	Y	N		Y	N
/OCs	国		3x40 ml		口	HCL	N	
Vutrients	ĹZI		100 ml		129	H2SO4	7	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ŋ		Sample volume		DX			囟
Chlorida If preservative is used, specify Type and Quantity of Preservative:								
Sinal Depth 84.45 Sample Time 0748 O748 See instruction								
Comment						m 2.1		
Arrived on site at la Purged well for a Purge ended at 1030)25 - total . Lef	Tanner of In	and Garrin pres	ent fi ds. Pu	or pur	ge. Purge be veil dry. water	gan a was r	+ 1028 murky
Acrived on site at 07 was 62.96 Samples	43 Ta	MACT AN	d Garrin present	-10 20	rieci.	samples. Dept	Th 10	Waler
Saldwing Symble?	שמיוכ	01 01110	Collection of		1, 3	017		

TW4-26 09-04-2013 Do not touch this cell (SheetName)

FIELD DATA WORKSHEET F	OR GROUNDWATER
Description of Sampling Event: 3rd Quarter Chi	oroform 2013
	Sampler Name
Location (well name): TW4 - 27	and initials: Tanner Holliday 177
Field Sample ID TW4-27_08292013	
Date and Time for Purging 8/28/2013 and	Sampling (if different) 8/29/2013
Well Purging Equip Used: Dump or Dumbailer W	ell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly ChloroTorm Prev. W	Vell Sampled in Sampling Event TW4-14
pH Buffer 7.0 pH	Buffer 4.0 4.0
Specific Conductance 199 µMHOS/ cm	Well Depth(0.01ft): 96,00
Depth to Water Before Purging 21.30 Casing	Volume (V) 4" Well: 9.59 (.653h) 3" Well: 6 (.367h)
Conductance (avg) 5375 pH of V	Vater (avg) 7.00
Well Water Temp. (avg) 16 86 Redox Potential	(Eh) 264 Turbidity 157
Weather Cond. Sund	Ext'l Amb. Temp. °C (prior sampling event) 276
Time 1303 Gal. Purged	Time Gal. Purged
Conductance \$375 pH 7,00	Conductance pH
Temp. °C 16.86	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0734 Gal. Purged 0	Time 0736 Gal. Purged o
Conductance 5375 pH 6.81	Conductance 5367 pH 6.89
Temp. °C [5,27]	Temp. °C [15, Z9]
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
~	[€ - \

roundwater Monitoring Quality Assurance I	Plan (QAP)							
Volume of Water Purged II gallon(s) After								
Pumping Rate Calculation								
Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V) $T = 2V/Q = 1.74$								
Number of casing volumes	evacuated	l (if other	than two)	1.14				
If well evacuated to dryness	, number	of gallons	s evacuated	11				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	Ď		3x40 ml		Ď	HCL	Ø	
Nutrients	Ď		100 ml		Ŕ	H2SO4	M	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	凶		Sample volume		ď			Ż
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 44,34 Sample Time 0735								
Comment See instruction								
Arrived on site at 12	59	anner o	and Garrin prese	nt for	purc	e Pucas ha	10 - 1	1302
Arrived on site at 1259 Tanner and Garrin present for purge. Purge began at 1302 Purged well for a total of 1 minute. Purged well dry! water was a milky white color. Purge ended at 1303. Left site at 1306								
Arrived on site at 073 was 81.75 Samples				to coll	ed s	amples. Depth	, to wa	ater
was 81.75 samples	bailed	and c	ollected at 0735	Lef	t'z f	e at 0737		·

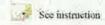
TW4-27 08-28-2013 Do not touch this cell (SheetName)

Description of Sampling Event: 3rd Quarter Chloroform 2013						
Description of Sampling Event: 3rd Quarter Chloroform 2013 Sampler Name						
Location (well name): TWY-28 and initials: Tanner Holliday / TH						
Field Sample ID TW4-28_08292013						
Date and Time for Purging 8/28/2013 and Sampling (if different) 8/29/2013						
Well Purging Equip Used: Dpump or D bailer Well Pump (if other than Bennet)						
Purging Method Used: 2 casings 3 casings						
Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event Twy · 27						
pH Buffer 7.0 7.0 pH Buffer 4.0 4.0						
Specific Conductance 999 µMHOS/ cm Well Depth(0.01ft): 107.00						
Depth to Water Before Purging 36.75 Casing Volume (V) 4" Well: 45.87 (.653h) 3" Well: 0 (.367h)						
Conductance (avg) PH of Water (avg) 7.23						
Well Water Temp. (avg) 6.64 Redox Potential (Eh) 292 Turbidity 18.7						
Weather Cond. Sunny Ext'l Amb. Temp. °C (prior sampling event) 28						
Time 1337 Gal. Purged 55 Time 1338 Gal. Purged 77						
Conductance II58 pH 7.24 Conductance II71 pH 7.24						
Temp. °C [16.72] Temp. °C [16.60]						
Redox Potential Eh (mV) 795 Redox Potential Eh (mV) 294 294						
Turbidity (NTU) Turbidity (NTU) 19 19						
Time 1339 Gal. Purged 88 Time 1346 Gal. Purged 99						
Conductance 1165 pH 7.22 Conductance 1161 pH 7.22						
Temp. °C [16.64]						
Redox Potential Eh (mV) 290 Redox Potential Eh (mV) 290						
Turbidity (NTU) Turbidity (NTU) 18.2						

Volume of Water Purged	99		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]		Time to evac $T = 2V/Q =$	8.34		volumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	٥				
If well evacuated to dryness	s, number	of gallons	s evacuated	٥				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWA	L			
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	DI DI		3x40 ml		凶	HCL	內	
utrients	Ď		100 ml		[3]	H2SO4	X	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	N		Sample volume		00			区
Chloride						If preservative is used Type and Quantity of		ive:
inal Depth 103.02 Sample Time 0743								
omment						See	instructio	n
Arrived on site at 13 Purged well for a tor Purge ended at 134	tal of 10. Le	9 mi F7 sit	nutes. water was e at 1344	, a 1.1	He m	urky.		
Arrived on site at 0739 Tanner and Garrin present to collect samples. Depth to water was 36.83 samples bailed and collected at 0743 Left site at 0745								

TW4-28 08-28-2013

Do not touch this cell (SheetName)



Description of Sampling Event: 3rd Quarter Chlore	STREETING CONTROL CONT
	Sampler Name
Location (well name): TW4-29	and initials: Tanner Holliday / H
Field Sample ID TW4-29_09122013	
Date and Time for Purging 9/11/2013 and	Sampling (if different)
Well Purging Equip Used: Dpump or bailer W	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. V	Vell Sampled in Sampling Event TW4-18
pH Buffer 7.0 7.0	H Buffer 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 93.50
Depth to Water Before Purging 81. 25 Casing	Volume (V) 4" Well: 7.99 (.653h) 3" Well: 6 (.367h)
Conductance (avg) 5304 pH of V	Water (avg) 6.36
Well Water Temp. (avg) 15.43 Redox Potentia	l (Eh) 386 Turbidity 29.6
Weather Cond. Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 5°
Time O700 Gal. Purged 11	Time Gal. Purged
Conductance 5304 pH 6.36	Conductance pH
Temp. °C 15.43	Temp. °C
Redox Potential Eh (mV) 386	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged O	Time O658 Gal. Purged O
Conductance 5295 pH 6.72	Conductance 5285 pH 6.69
	34
Temp. °C \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Temp. °C J5.37
Temp. °C \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Temp. °C J5.37 Redox Potential Eh (mV)

roundwater Monitoring Quality Assurance	Plan (QAP)						Date	e: 04/04/13 Rev. /
Volume of Water Purged gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V) $T = 2V/Q = 1.95$								
Number of casing volumes	evacuated	d (if other	than two)	1.37				
If well evacuated to dryness	, number	of gallons	sevacuated	[II				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample		le Taken	Sample Vol (indicate if other than as	Filte		Preservative Type		ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	N		3x40 ml		[X]	HCL	Z	
Nutrients	Ĕ		100 ml		IX	H2SO4		
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	N		Sample volume		129			X
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 97.03 Sample Time 0657								
Comment See instruction								
Arrived on site at 0659. Purged well for Purge ended at 070 Arrived on site at 06 was 81.56 Samples	0655 or 1 m 00 Lef 53 Ta	Tanrainute. 7 site inner and	her and Garrin pr Purged well dry. w at 0703 I Garrin present 0657 Left	resent pater u to col + site	for pas m lect	purge. Purge ostly Clear. Samples, Do 0659	began pth t	at o wuter
	-				•			

Do not touch this cell (SheetName) TW4-29 09-11-2013

FIELD DATA WORKSHEET I	
Description of Sampling Event: 3rd Quarter Chlo	Sampler Name
Location (well name): TWY-29	and initials: Tanner Holliday /TH
Field Sample ID TW4-29_09262013	
Date and Time for Purging 9/25/2013 and	Sampling (if different) 9/26/2013
Well Purging Equip Used: ☐ pump or ☐ bailer V	Vell Pump (if other than Bennet) Grund fos
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event
pH Buffer 7.0 pl	H Buffer 4.0 4.0
Specific Conductance 999 µMHOS/cm	Well Depth(0.01ft): 43.50
Depth to Water Before Purging 71.78 Casing	Volume (V) 4" Well: 14.18 (.653h)
	3" Well: (.367h)
Conductance (avg) 9307 pH of	Water (avg) 6.64
Well Water Temp. (avg) 15.24 Redox Potentia	d (Eh) 298 Turbidity 49
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 11°
Time 0406 Gal. Purged 18	Time Gal. Purged
Conductance 4307. pH 6.64	Conductance pH
Temp. °C [15.24]	Temp. °C
Redox Potential Eh (mV) 248	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0713 Gal. Purged 0	Time O714 Gal, Purged O
Conductance 4258 pH 6.26	Conductance 4251 pH 6.31
Temp. °C [15-32]	Temp. °C 15.35
Redox Potential Eh (mV) 437.	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Before	After

Pumping Rate Calculation	- No 5	× 18	T.P.E.			- 25 v i	N 4 A	
Flow Rate (Q), in gpm.	- 1		Time to evace	nate two	casing	volumes (2V)		
S/60 = 11			T = 2V/Q =		CHOINE			
Number of casing volumes	s evacuate	d (if other	than two)	1.26				
If well evacuated to dryne	ss. number	of gallon	is evacuated	18				
Name of Certified Analyti	cal Labora	tory if Ot	her Than Energy Labs [AWA	L			
	1		Sample Vol (indicate					
Type of Sample	Samp	le Taken	if other than as	Filtered		Preservative Type	Preservative Added	
2,70022222	Y	N ·	specified below)	Y	N		Y	N
/OCs	[X]		3x40 ml		囟	HCL	囟	
Nutrients	[3]		100 mł		即	H2SO4	图	
leavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Bross Alpha			1,000 inl			HNO3		
Other (specify)	(3)		Sample volume		図			Z
Chloride						If preservative is use Type and Quantity of		ive:
Final Depth 42.01		Sample 7	Time 0713			See	instructio	ii
Arrived on site at 09 Purged well for a Purged well dry! Arrived on site at 07 71.70 Samples baile	total Purge e	of 1 ended a	minute 40 sec t 0906. Left site d Garrin Present to	onds, e at collect	water 0909 Sami	was Murky. oles. Depth to 1		

ATTACHMENT 1-2 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUNDWATER

1	See instruction	1
A 100		

FIELD DATA WORKSHEET FOR GROUNDWATER							
Description of Sampling Event: 3rd Quter Chloroform 2013							
Sampler Name							
Location (well name): Tw4-30 and initials: Tanner Holliday 17H							
Field Sample ID TW4-30_08792013							
Date and Time for Purging 8/28/2013 and Sampling (if different) 8/29/2013							
Well Purging Equip Used: Dpump or D bailer Well Pump (if other than Bennet)							
Purging Method Used: 2 casings 3 casings							
Sampling Event Quarterly Chloro Form Prev. Well Sampled in Sampling Event TW4-28							
pH Buffer 7.0 7, 0 pH Buffer 4.0 4.0							
Specific Conductance 999 µMHOS/ cm Well Depth(0.01ft): 92.50							
Depth to Water Before Purging 77, 66 Casing Volume (V) 4" Well: 9,69 (.653h) 3" Well: 0 (.367h)							
Conductance (avg) 4405 pH of Water (avg) 5,75							
Well Water Temp. (avg) 16.78 Redox Potential (Eh) 339 Turbidity 36							
Weather Cond. Sunny Ext'l Amb. Temp. °C (prior sampling event) 30°							
Time 1429 Gal. Purged 11 Time Gal. Purged							
Conductance 4405 pH 5.45 Conductance pH							
Temp. °C							
Redox Potential Eh (mV) Redox Potential Eh (mV)							
Turbidity (NTU) Turbidity (NTU)							
Time 075] Gal. Purged 0 Time 0753 Gal. Purged 6							
Conductance 4458 pH 5,55 Conductance 4429 pH 5,59							
Temp. °C [5.47] Temp. °C [5.46]							
Redox Potential Eh (mV) Redox Potential Eh (mV)							
Turbidity (NTU)							

Volume of Water Purged	11		gallon(s)		AFte	r		
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 =			Time to evac $T = 2V/Q = $			volumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	1.13				
If well evacuated to dryness	, number	of gallons	s evacuated	17				
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWAL	•			
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N		Y	N
'OCs	Ż		3x40 ml		K	HCL	囟	
lutrients	Ď		100 ml		V	H2SO4	X	
leavy Metals			250 ml			HNO3		
II Other Non Radiologics			250 ml			No Preserv.		
iross Alpha			1,000 ml			HNO3		
Other (specify)	ĽZ.		Sample volume		日			区
Chloride						If preservative is used Type and Quantity of		ive:

Comment

Final Depth 90.31

Sample Time

0751

See instruction

Arrived on sile at 1424 Tanner and Garrin present for purge. Purge began at 1428 Purged well for I minute. Purged well dry! water was a little murky. Purge ended at 1429 Leff site at 1434

Arrived on site at 0747 Tanner and Garrin present to collect samples. Depth to water was 77.80 samples bailed and collected at 0751 Left site at 0754

TW4-30 08-28-2013

Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUNDWATER

Description of Sampling Event: 3rd Quarter Chloro-	Factor 2017
Description of Sampling Event.	Sampler Name
Location (well name): TW4-3	and initials: Tanner Hollidas ITH
Field Sample ID TW4-31_09052013	
Date and Time for Purging 9/4/2013 and	Sampling (if different) 9/5/2013
Well Purging Equip Used: Dpump or Dbailer W	Tell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	NET
Sampling Event Quarter & Chloroform Prev. W	Vell Sampled in Sampling Event MW-32
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 106.00
Depth to Water Before Purging 83.76 Casing	Volume (V) 4" Well: 14.52 (.653h) 3" Well: 0 (.367h)
Conductance (avg) PH of V	Vater (avg) 6.97
Well Water Temp. (avg) 15.75 Redox Potential	(Eh) 337 Turbidity 345
Weather Cond.	Ext'l Amb. Temp. °C (prior sampling event) 15°
Time O718 Gal. Purged	Time Gal. Purged
Conductance 4969 pH 6.97	Conductance pH
Temp. °C 15.15	Temp. °C
Redox Potential Eh (mV) 332	Redox Potential Eh (mV)
Turbidity (NTU) 365	Turbidity (NTU)
Time 0654 Gal. Purged 6	Time 0656 Gal. Purged 0
Conductance 4795 pH 6.93	Conductance 4803 pH 6.92
Temp. °C [15.9]	Temp. °C 15.18
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
	~

Plan (QAP)							
18		gallon(s)		AFA	er		
Ď				casing v	olumes (2V)		
evacuate	d (if other	than two)	1.23				
, number	of gallons	s evacuated	18				
al Labora	tory if Oth	er Than Energy Labs	AWAL				
		Sample Vol (indicate if other than as			Preservative Type		ative Added
					TICI		N
<u> </u>		Sample volume		D	111103		-T3
					_		ive:
	Sample T	ime 0655	ĺ				
					Fig. 5		
otal c Left sitc a	Tanner a F I m Site 1 0651	inute and 40 Se at 0720, water b Tanner and Garr	t for seconds and small pro	purge, Purg all son	Purge beganded well dry. I porticles float to collect so	at and	0716 a l:He
	evacuated, number of Labora Samp	evacuated (if other number of gallons al Laboratory if Other Sample Taken Y N D D D D D D D Sample T	Time to evacuated (if other than two) number of gallons evacuated I Laboratory if Other Than Energy Labs Sample Taken N Sample Vol (indicate if other than as specified below) N N Sample Tolon N N Sample Vol (indicate if other than as specified below) Sample Tolon N Sample Vol (indicate if other than as specified below) Sample Tolon Sample Vol (indicate if other than as specified below) Sample Tolon Sample Vol (indicate if other than as specified below) Sample Tolon Sample Tolon Sample Volume	Time to evacuate two T = 2V/Q = 2.64 Evacuated (if other than two) I.23 In number of gallons evacuated I Laboratory if Other Than Energy Labs Sample Taken Sample Vol (indicate if other than as specified below) N specified below) N specified below) N Sample Taken Sample Taken Sample Vol (indicate if other than as specified below) N Sample Taken Sample Taken Sample Vol (indicate if other than as specified below) N Sample Taken Sample Vol (indicate if other than as specified below) N Sample Taken Sample Vol (indicate if other than as specified below) N Sample Taken Sample Vol (indicate if other than as specified below) N Sample Taken Sample Vol (indicate if other than as specified below) N Sample Taken Sample Taken Sample Vol (indicate if other than as specified below) N Sample Taken Sample Taken Sample Vol (indicate if other than as specified below) N Sample Taken Sample Taken	Time to evacuate two casing v T = 2V/Q = 2.64 Evacuated (if other than two) I.23 In number of gallons evacuated I Laboratory if Other Than Energy Labs Sample Taken Sample Vol (indicate if other than as specified below) No 3x40 ml No 100 ml No	Time to evacuate two easing volumes (2V) T = 2V/Q = 2_64 Evacuated (if other than two) I.23 In number of gallons evacuated I Laboratory if Other Than Energy Labs Sample Taken Y N specified below) Y N specified below) Y N specified below) I HCL I H2SO4 I H0O ml I H2SO4 I HNO3 I Sample volume I f preservative is used Type and Quantity of Sample Time Sample Time O 655	Time to evacuate two casing volumes (2V) T = 2V/Q = 2.64 Evacuated (if other than two) I.23 Inumber of gallons evacuated I Laboratory if Other Than Energy Labs Sample Taken Sample Vol (indicate if other than as specified below) Y N Sample Taken Y N Sample Vol (indicate if other than as specified below) Y N HCL Sample HCL Sample Vol mile in H2SO4 I HNO3 I HNO3 I Sample volume If preservative is used, specify Type and Quantity of Preservative is used.

TW4-31 09-04-2013 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL SIELD DATA WORKSHEET FOR GROUNDWATER

Description of Sampling Event: 3rd Quarter Chloroform 2013	
Sampler Name	
Location (well name): TW4-60 and initials: Tanner Holliday/TH	
Field Sample ID Tw4-60_09122013	
Date and Time for Purging 9/12/2013 and Sampling (if different)	
Well Purging Equip Used: Dpump or D bailer Well Pump (if other than Bennet)	
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event TW4-02	
pH Buffer 7.0 7.8 pH Buffer 4.0 4.0	
Specific Conductance 999 µMHOS/ cm Well Depth(0.01ft):	
Depth to Water Before Purging O Casing Volume (V) 4" Well: O (.653h) (.367h)	
Conductance (avg) 0.5 pH of Water (avg) 7.83	
Well Water Temp. (avg) 23,23 Redox Potential (Eh) 161 Turbidity 6	
Weather Cond. Party Cloudy Ext'l Amb. Temp. °C (prior sampling event) Z1°	
Time Gal. Purged C Time Gal. Purged	
Conductance 0.5 pH 7.83 Conductance pH	
Temp. °C Z3.Z3 Temp. °C	
Redox Potential Eh (mV) Redox Potential Eh (mV)	
Turbidity (NTU) Turbidity (NTU)	
Time Gal. Purged Time Gal. Purged	
Conductance pH Conductance pH	
Temp. °C Temp. °C	
Redox Potential Eh (mV) Redox Potential Eh (mV)	
Turbidity (NTU)	

Volume of Water Purged	0		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. $S/60 = \bigcirc$			Time to evac $T = 2V/Q =$		casing v	volumes (2V)		
Number of casing volumes	evacuate	d (if other	than two)	D				
If well evacuated to dryness	, number	of gallons	sevacuated	0				
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWA	L			
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	മ		3x40 ml			HCL	Æ	
Nutrients	力		100 ml		E	H2SO4		
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	700		Sample volume		N			\(\overline{\lambda}\)
Chloride						If preservative is used Type and Quantity of		ive:
Final Depth 0		Sample T	ime 0845	l		See	instructio	on
Comment	I	s)an	k					
	7							• •
TW4-60 09-12-2013	Do	not touch t	his cell (SheetName)					

ATTACHMENT 1-2 WHITE MESA URANIUM MILL DATA WORKSHEET FOR CROUNDWATER

Description of Sampling Event: 3rd Quarter Chloroform 2013							
Description of Sampling Event: 3rd Quarter Chlo							
Location (well name): TW4-65	Sampler Name and initials: Tanner Holliday / TH						
Field Sample ID TW4-65_08292013							
Date and Time for Purging 8/28/2013 and	Sampling (if different)						
Well Purging Equip Used: Dump or bailer W	(ell Pump (if other than Bennet)						
Purging Method Used: 2 casings 2 casings							
Sampling Event Quarter Chlorolorm Prev. W	Vell Sampled in Sampling Event						
pH Buffer 7.0 pH	Buffer 4.0 4.0						
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 141,00						
Depth to Water Before Purging Casing Volume (V) 4" Well: 58.31 (.653h) (.367h)							
Conductance (avg) pH of V	Water (avg) 6,81						
Well Water Temp. (avg) 14.78 Redox Potential	(Eh) Z72 Turbidity 14.6						
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)						
Time Gal. Purged	Time Gal, Purged						
Conductance pH	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Time Gal. Purged	Time Gal. Purged						
Conductance pH	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						

Volume of Water Purged	91		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = }]]		Time to evac $T = 2V/Q =$			volumes (2V)		
Number of casing volumes	evacuate	d (if other	than two)	1,56				
If well evacuated to dryness	s, number	of gallons	s evacuated	91				
Name of Certified Analytics	al Labora	tory if Oth	ner Than Energy Labs	AWAL	-			
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	网		3x40 ml		7	HCL	Z	
utrients	[2]		100 ml		D 2	H2SO4	[X]	
eavy Metals			250 ml			HNO3		
Il Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	<u> </u>		Sample volume		ĎS	IIIVOS	0	<u> </u>
Chloride			•			If preservative is used Type and Quantity of		ive:
nal Depth 139,83		Sample T	ime 0700	Ī		See	instructio	on
Duplicate		7	TW4-0	3				

Do not touch this cell (SheetName)

TW4-65 08-28-2013

ATTACHMENT 1-2 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUNDWATER

1		
19	See	instruction

FIELD DATA WORKSHEET FOR GROUNDWATER							
Description of Sampling Event: 3rd Quarter Chlorolorm 2013							
-2 W 70	Sampler Name						
Location (well name): TW4-70	and initials: Tanner Holliday/TH						
Field Sample ID TW4-70_09052013							
Date and Time for Purging 9/4/2013 and	Sampling (if different) 9/5/2013						
Well Purging Equip Used: pump or bailer W	Tell Pump (if other than Bennet)						
Purging Method Used: 2 casings 2 casings							
Sampling Event Quarterly Chloroform Prev. W	Vell Sampled in Sampling Event TW4-23						
pH Buffer 7.0 PH	Buffer 4.0						
Specific Conductance µMHOS/ cm	Well Depth(0.01ft): 125,00						
Depth to Water Before Purging 65.04 Casing	Volume (V) 4" Well: 39.15 (.653h) 3" Well: 0 (.367h)						
Conductance (avg) PH of V	Water (avg) 6.83						
Well Water Temp. (avg) 15.03 Redox Potential	(Eh) 140 Turbidity 257						
Weather Cond. Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 17°						
Time Gal. Purged	Time Gal. Purged						
Conductance pH	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Time Gal. Purged	Time Gal. Purged						
Conductance pH	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						

Volume of Water Purged 99 gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 =	ĺ		Time to evac $T = 2V/Q =$			volumes (2V)		
Number of casing volumes of	evacuated	d (if other	than two)	S				
If well evacuated to dryness	, number	of gallons	sevacuated	0				
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWAI	-			
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	Ø		3x40 ml		Ø	HCL		
Nutrients	团		100 ml		<u> </u>	H2SO4	Ø	
Ieavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
						IIIVOS		
Other (specify)	四		Sample volume		X			团
If preservative is used, specify Type and Quantity of Preservative: nal Depth 72. Sample Time 0710 75.25 See instruction								
Duplie	cate	e 0	FTW4-	-08	3			
TW4-70 09-04-2013	Do r	not touch t	his cell (SheetName)					

Tab C
Weekly and Monthly Depth to Water Data

Date 7/2/13

Name Garria / Tanner

				System Operational (If no note
Time	<u>Well</u>	Depth*	Comments	any problems/corrective actions)
1326	MW-4	74.48	Flow 4.3 6PM	Yes No
71	E E		Meter 135075,20	Yes No
1322	MW-26	61.60	Flow 10.6 GPM	Yes No
			Meter 338555.37	Yes No
1405	TW4-19	64.72	Flow 14.0 GPM	Yes No
			Meter 1272809.03	YES No
1317	TW4-20	59,86	Flow 8.5 6PM	Yes No
			Meter 573332.21	Yes No
1329	TW4-4	70.86	Flow 8.3 6PM	(Yes) No
			Meter 129096.50	(Yes) No
1300	TWN-2	31.70	Flow 18.6 6PM	(Yes) No
			Meter 94281.50	(es) No
1313	TW4-22	56.54	Flow is o GPM	(Yes) No
			Meter 44201.40	Yes No
1308	TW4-24	70.02	Flow 10-2 6PM	(Yes) No
			Meter 355368.02	(Yes) No
1252	TW4-25	60.70	Flow 18.2 GPM	(Yes) No
			Meter 267987.50	(Yes) No

Operational Problems (Please list well number): TWY-24 TWY-20 Flow rate dropped from previous weeks because multiple wells were pumping at the same time.

Corrective Action(s) Taken (Please list well number): changed timer on twu-24, will continue to menitor flow rates.

^{*} Depth is measured to the nearest 0.01 feet.

Date 7/8/13

Name Garrin Palmet, Tanner Helliday

				System Operational (If no note
<u>Time</u>	Well	Depth*	<u>Comments</u>	any problems/corrective actions)
0949	MW-4	67.76	Flow 4,3	Yes) No
			Meter 1393683/	Yes No
0945	MW-26	62.90	Flow 10.2	Yes No
			Meter 340135.41	Yes No
1030	TW4-19	70.02	Flow 14.0 68M	(Yes) No
			Meter 1297686.00	Ves No
0940	TW4-20	66,65	Flow 9.8	Yes No
			Meter 5745650.60	Yes No
0953	TW4-4	TORS	Flow 8.0	Yes No
		67.65	Meter 132891,90	Yes No
0927	TWN-2	34.70	Flow 18.5	Yes No
			Meter 87258.30	Yes No
0936	TW4-22	56.86	Flow 18,2	Yes No
			Meter 45818.60	Yes No
0932	TW4-24	64.40	Flow 18.1	Yes No
			Meter 370520.70	Yes No
0922	TW4-25	75.88	Flow 18.2	Yes No
			Meter 267029.40	Yes No

Operational Problems (Please list well number):	
Corrective Action(s) Taken (Please list well number):	q

^{*} Depth is measured to the nearest 0.01 feet.

Date 7/15/13

Timo	Well	Donth*	Commonto	System Operational (If no note any problems/corrective actions)
<u>Time</u>	Well	Depth*	Comments	
1314	MW-4	76.15	Flow 4.3 GPM	(Yes) No
			Meter 144860.68	Yes No
1309	MW-26	62.52	Flow 10-0 6PM	(Yes) No
			Meter 342107.98	(Yes) No
1345	TW4-19	61.14	Flow 14.00 6PM	Yes No
			Meter 1327592.06	Yes No
1306	TW4-20	60.71	Flow 8 4 GPM	Yes No
			Meter 576053.01	Yes No
1317	TW4-4	71.40	Flow 7.5 6PM	(Yes) No
			Meter 137591.00	Yes No
1254	TWN-2	32.00	Flow 19.1 GPM	Yes No
			Meter 90991.30	Yes No
1302	TW4-22	56.75	Flow 19.4 6PM	(Yes) No
			Meter 47973.60	(Yes) No
1258	TW4-24	64.20	Flow 18.6 6PM	(Yes) No
			Meter 390788.20	(Yes) No
1250	TW4-25	61.15	Flow 18.8 6PM	Yes No
			Meter 278026.04	(Yes) No

Operational Problems (Please list well number):		
Corrective Action(s) Taken (Please list well number):	=======================================	

^{*} Depth is measured to the nearest 0.01 feet.

Date 7/23/13

				System Operational (If no note
Time	Well	Depth*	Comments	any problems/corrective actions)
1310	MW-4	72.63	Flow 3.1 GPM	(Yes) No
<i>(i</i> -			Meter 150968.83	Yes No
1306	MW-26	63.20	Flow 10.0 GPM	(Yes) No
			Meter 344368-20	(Yes) No
1425	TW4-19	66.37	Flow 14.0 GPM	Ves No
			Meter 1361281,09	(Yes) No
1301	TW4-20	61.20	Flow 8.9 6PM	Yes No
			Meter 577710, 41	(Yes) No
1315	TW4-4	82.60	Flow 8-0 GPM	Yes No
			Meter 142828-50	Yes No
1240	TWN-2	32,65	Flow 18.7 GPM	Yes No
			Meter 95031.90	(Yes) No
1255	TW4-22	57.00	Flow 17.6 GPM	Yes No
			Meter 50065.10	⟨Yes No
1249	TW4-24	64.60	Flow 18.0 GPM	Yes No
			Meter 413128,70	Yes No
1233	TW4-25	65.17	Flow 18-0 GPM	(Ves) No
			Meter 290318, 80	(es) No

Operational Problems (Please list well number):		
Corrective Action(s) Taken (Please list well number):	,	

^{*} Depth is measured to the nearest 0.01 feet.

Date 7/29/13

Name Garrin Palmer, Taner Holliday

				System Operational (If no note
Time	<u>Well</u>	Depth*	Comments	any problems/corrective actions)
1234	MW-4	67.79	Flow 3.2 GPM	Yes No
			Meter 155420.64	Yes No
1230	MW-26	67.17	Flow 10-2 6PM	Yes No
			Meter 345972.90	Yes No
1307	TW4-19	76.42	Flow 14.0 GPM	(Yes) No
			Meter 1386264.00	(Yes) No
1226	TW4-20	61.80	Flow 9.8 6PM	(Yes) No
			Meter 578073.90	Yes No
1237	TW4-4	70.10	Flow 8.0 6PM	(Yes) No
			Meter 146845.34	Yes No
1213	TWN-2	59.03	Flow 18-6 GPM	(Yes No
			Meter 98247.70	(Yes) No
1222	TW4-22	57.13	Flow 18.0 6PM	Yes No
			Meter 51615 84	(Yes) No
1218	TW4-24	64.98	Flow 18.0 Gen	Yes No
			Meter 429975.36	Yes No
1209	TW4-25	68.90	Flow 18.1 6PM	Yes No
			Meter 299418.40	Yes No

Operational Problems (Please list well number):	
Corrective Action(s) Taken (Please list well number):	

^{*} Depth is measured to the nearest 0.01 feet.

Monthly Depth Check Form

Date 7	130113	_	Name	Garrin Palme	T. Tancar Hollida
<u>Time</u>	<u>Well</u>	Depth*	<u>Time</u>	<u>Well</u>	Depth*
0636	MW-4	67.76	0631	TWN-1	56.11
0639	TW4-1	64.35	0639	TWN-2	37.24
0635	TW4-2	65.60	0641	TWN-3	37.56
0712	TW4-3	51.65	0646	TWN-4	48.22
0641	TW4-4	69.82	0653	TWN-7	87.00
6716	TW4-5	59.35	0643	TWN-18	58.62
0642	TW4-6	69.35	6650	MW-27	52.51
0637	TW4-7	65.16	0719	MW-30	75.35
0710	TW4-8	65.12	6715	MW-31	67.45
0714	TW4-9	57.09	0651	TW4-28	36.78
0718	TW4-10	57.42	0659	TW4-29	72.15
0633	TW4-11	57.11	0702	TW4-30	77.90
0649	TW4-12	42.10		TW4-31	_84.01
6653	TW4-13	47.50			
0655	TW4-14	25.60			
0708	TW4-15	63.21	-		
0710	TW4-16	60.60			
0712	TW4-17	73.92			
0633	TW4-18	59.96	-		
0730	TW4-19	60.30			
0705	TW4-20	61.25			-
0637	TW4-21	59.64			
6702	TW4-22	57.15			
6708	TW4-23	64.36	-		<u> </u>
6658	TW4-24	64.01	-		
0628	TW4-25	57.13			-
0644	TW4-26	62.84			
0657	TW4-27	81.52			
Comme	nts: (Please	note the well	number fo	or any comr	ments)
Some 1	imes may	be the sam	e hecaus	e depths	were taken

^{*} Depth is measured to the nearest 0.01 feet

Date 8/5/13

Name Garrin Palnet. Tomar Holliday

<u>Time</u>	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1259	MW-4	68.01	Flow 3.2 6Pm	Yes No
			Meter 160969.65	(Yes) No
1256	MW-26	75.74	Flow 10-5 cen	Yes No
			Meter 347880.63	Yes No
1316	TW4-19	60.44	Flow 140 GRY	(Yes) No
			Meter 1412339,00	Yes No
1252	TW4-20	62.86	Flow 10-4 6PM	Yes No
			Meter 58046308	Yes No
1303	TW4-4	70.04		Yes No
18			Meter 151513.00	Yes No
1440	TWN-2	32.19	Flow 18.6 GPM	(Yes) No
			Meter 101856.60	(Yes) No
1448	TW4-22	57.55	Flow 18.4 6PM	Yes No
			Meter 53667.30	(Yes) No
1445	TW4-24	65.10	Flow 18.0 684	Yes No
			Meter 449282-10	(Yes) No
1428	TW4-25	57.95	Flow 18.6 GPM	(Yes) No
			Meter 3/0252.90	Yes No

Operational Problems (Please list well number):	
Corrective Action(s) Taken (Please list well number):	

^{*} Depth is measured to the nearest 0.01 feet.

Date 8/12/13

Name Farmin Palmer, Pane Holliday

				System Operational (If no note
Time	Well	Depth*	<u>Comments</u>	any problems/corrective actions)
1246	MW-4	67.84	Flow 3.3 6PM	(Yes) No
			Meter \66100.21	(Yes) No
1243	MW-26	65.68	Flow 10-1 6PM	(Yes) No
			Meter 349648.06	Yes) No
1325	TW4-19	66.42	Flow 14.0 GPM	Yes No
			Meter 1440777.00	Yes No
1240	TW4-20	62.13	Flow 10.5 68M	(Yeś) No
			Meter 581902.16	(Yes) No
1250	TW4-4	70.42	Flow 8.0 6Pm	Yes No
			Meter 156111.20	(Yes) No
1227	TWN-2	35.70	Flow 18.6 Gen	Yes No
			Meter 105458 30	Yes No
1236	TW4-22	57.35	Flow 18.4 6PM	Yes No
			Meter 55053	Yes) No
1232	TW4-24	65.19	Flow 18.0 6PM	Yes) No
			Meter 468224.80	Yes No
1223	TW4-25	73.30	Flow 18.4 GPM	(Yes) No
			Meter 320963.90	(Yes) No

8	
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	

^{*} Depth is measured to the nearest 0.01 feet.

Date 8/19/2013

Name Tanner Holliday

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1355	MW-4	68.01	Flow 3.4	Yes No
			Meter 1715 61.92	Yes) No
1350	MW-26	(EECE)	Flow 10.5	(Yes) No
		70.13	Meter 351525 82	Yes No
1415	TW4-19	67,13	Flow 14,0	Yes No
			Meter 1469844,04	Yes No
1345	TW4-20	P 62.45	Flow 10,3	(Yes) No
			Meter 583345.08	Yes No
1358	TW4-4	69.93	Flow 8.0	Yes No
			Meter 166983.4	Yes No
1409	TWN-2	33,21	Flow 18.5	Yes No
			Meter 105953.8	Yes No
3342	TW4-22	65.15	Flow 18.4	Yes No
			Meter 57377.9	Yes No
1339	TW4-24	64,03	Flow 18.0	Yes No
			Meter 487124.7	Yes No
1405	TW4-25	60.53	Flow 18,3	Yes No
			Meter 3313 20. Z	(Yes) No

Operational Problems (Please list well number):		
Corrective Action(s) Taken (Please list well number):	¥	

^{*} Depth is measured to the nearest 0.01 feet.

Monthly Depth Check Form

Date 8	123/13	ionthly Dept —		Sarrin Palme	.5
		— D			Tell AN IA
Time	Well A	Depth*	<u>Time</u>	Well TWN 1	Depth*
1010	MW-4	64.35	0934	TWN-1	<u>56.33</u>
1019	TW4-1		<u>0954</u> 0931_	TWN-2	-
	TW4-2	<u>65.55</u>		TWN-3 • TWN-4	<u>37.57</u> 4850
1012	TW4-3	51.65	0925 a	3TWN-7	
1020	TW4-4 TW4-5	H.38		TWN-18	87.04
1009		59.50	0927	MW-27	58.64
	TW4-6 TW4-7	69.20	1250	MW-30	52.50 75.32
1017	TW4-8	65.05	1302	MW-31	67.31
1011	TW4-9	57.22	1037	TW4-28	36.74
1007	TW4-10	57.55	10 38	TW4-20	72.00
1047	TW4-10	57.55	1029	TW4-29	77.70
1039	TW4-12	42.07	1031	TW4-31	83.77 FF.58
1035	TW4-13	47.21		100401	0.3.
(033	TW4-14	85.36			
1005	TW4-15	63,78			
1305	TW4-16	60.90			-
1308	TW4-17	73.90			· · · · · · · · · · · · · · · · · · ·
0936	TW4-18	60.21			
1100	TW4-19	68.60	-		
1003	TW4-20	6 2.35	-		
0938	TW4-21	60.20	-		
1002	TW4-22	57.03	+		
1043	TW4-23	64.30			-
1000	TW4-24	65.28			
0941	TW4-25	63.32			
1022	TW4-26	62.76			
1026	TW4-27	81.30			
	nts: (Please	note the well r	number fo	or any comi	ments)

^{*} Depth is measured to the nearest 0.01 feet

Date __g|26|13

Name Garrin Palmer, Tamar Holliday

				System Operational (If no note
Time	Well	Depth*	Comments	any problems/corrective actions)
1344	MW-4	69.20	Flow 3.1 6PM	Yes No
			Meter 176934.09	Yes No
1340	MW-26	63.39	Flow 10.4 6PM	(Yes) No
			Meter 353425.74	Yes No
1440	TW4-19	64.86	Flow 140 GPM	(Yes) No
			Meter 1449215.00	(Yes') No
1338	TW4-20	62.34	Flow 10.0 GPM	Yes No
			Meter 58 4883,25	Yes No
1348	TW4-4	71.46	Flow 8.1 GPM	(Yes) No
			Meter 165672.10	Yes) No
1370	TWN-2	32.80	Flow 18.6 6PM	Yes No
			Meter 11.25 30. 30	Yes) No
1333	TW4-22	57.34	Flow 18.4 6PM	Yes No
			Meter 58729.40	Yes No
i328	TW4-24	75.10	Flow 17.9 GPM	(Yes) No
			Meter 502614.00	(Yes) No
1300	TW4-25	60.15	Flow 18.0 GPM	Yes No
			Meter 341824,80	Yes No

Operational Problems (Please list well number):	
Corrective Action(s) Taken (Please list well number):	
	

^{*} Depth is measured to the nearest 0.01 feet.

Date 9/3/13

Time	Well	Donth*	Comments	System Operational (If no note any problems/corrective actions)
Time		Depth*	Comments	any problems/corrective actions)
1332	MW-4	69.71	Flow 3,3 6PM	(Yes) No
			Meter 3.3 60%	(Yes) No
			182330.60	
1325	MW-26	63.30	Flow 10.4 6PM	Yes No
			Meter 355245.76	Yes No
1140	TW4-19	59.22	Flow 14.0 6PM	Yes No
			Meter 1506246-00	(Yes No
1312	TW4-20	61.30	Flow 9.6 GPM	(Yes) No
			Meter 586204.75	Yes No
1339	TW4-4	68.04	Flow 8.0 GPM	Yes No
			Meter 170393.70	Yes No
1245	TWN-2	30,20	Flow 18.7 GPM	Yes No
			Meter 116725.0	Yes No
	TW4-22	1750	Flow 195	Yes No
1303	1 44-22	57.50	FIOW 18.5	
			Meter 60602.00	Ves No
1252	TW4-24	65.70	Flow 18-4 LPM	∠Yeś No
			Meter 524637.00	(Yes) No
1235	TW4-25	65.90	Flow 18.0 6Pm	(Yes) No
			Meter 353884.76	(Yes) No

Operational Problems (Please list well number):	
Corrective Action(s) Taken (Please list well number):	

^{*} Depth is measured to the nearest 0.01 feet.

Date 9/9/13

Time	Well	Double*	0	System Operational (If no note
Time	Well	Depth*	Comments	any problems/corrective actions)
1223	MW-4	67.48	Flow 3.4 6PM	Yes) No
			Meter 186847.91	Yes) No
1231	MW-26	66.72	Flow 10-1 6PM	Yes No
			Meter 356982.86	Yes No
1308	TW4-19	65.96	Flow 14.0 6PM	(Yes) No
			Meter 1533900.00	(Yes) No
1236	TW4-20	61.85	Flow 4,8 6PM	(Yes) No
			Meter 587563.47	Yes No
1226	TW4-4	69.10	Flow 8.6 GPM	Yes No
			Meter 174228-40	Yes) No
1200	TWN-2	29.60	Flow 18.5 GPM	Yes No
			Meter 119042.30	Yes No
1242	TW4-22	57.50	Flow 18.1 GPM	(Yes) No
			Meter 62381.40	(Yes) No
1247	TW4-24	65.60	Flow 18.0 GPM	(Yes) No
			Meter 542200.10	(Yes) No
1152	TW4-25	57.85	Flow 18.0 GPM	Yes No
			Meter 362699,80	Yes No

Operational Problems (Please list well number):	
Corrective Action(s) Taken (Please list well number):	

^{*} Depth is measured to the nearest 0.01 feet.

Date 9/17/13

1226				System Operational (If no note
Time	Well	Depth*	Comments	any problems/corrective actions)
1027	MW-4	70.52	Flow 3.4 GPM	(Yes)No
			Meter 193119.14	(Yes) No
1022	MW-26	62.48	Flow 10.5 GPM	(Yes) No
			Meter 359096-11	(Yes) No
1500	TW4-19	59.64	Flow 14.0 GPM	(Yes) No
			Meter 1543673.00	(Yes) No
1018	TW4-20	61-11	Flow 9.6 GPM	(Yes) No
			Meter 589192.20	(Yes) No
1031	TW4-4	69.20	Flow 8.0 CPM	(Yes) No
			Meter 179735.30	(Yes') No
1248	TWN-2	32.12	Flow 18.5 6PM	Yes No
			Meter 124170.60	Yes No
1014	TW4-22	57.70	Flow 18.2 GPM	(Yes) No
			Meter 64429.10	(Yes) No
1010	TW4-24	68.98	Flow 18.0 GPM	Yes No
			Meter 564631.00	Yes No
1243	TW4-25	70.62	Flow 18-3 GPM	(Yes) No
			Meter 374768,90	(Yes) No

Operational Problems (Please list well number):	Breaker was tripped on TW4-19	α
Corrective Action(s) Taken (Please list well number):	Breaker was re-set and well	Ľ
pumping normally.		

^{*} Depth is measured to the nearest 0.01 feet.

Date 9/23/13

Name Garrin Palmer, Tomer Holliday

			Next Air	System Operational (If no note			
Time	Well	Depth*	Comments	any problems/corrective actions)			
1239	MW-4	67.45	Flow 3.3 GPM	Yes No			
			Meter 196953.83	(Yes) No			
1236	MW-26	66.70	Flow 10.2 GPM	Yes No			
			Meter 360821.30	Yes No			
1301	TW4-19	70.32	Flow 14.0 6PM	(Yes) No			
			Meter 1566157.00	Yes No			
1232	TW4-20	61.30	Flow 10.4 GPM	(Yes) No			
			Meter 590149.26	(Yes) No			
1244	TW4-4	69.04	Flow 8.0 Gem	(Yes) No			
			Meter 1830 21.50	(Yes) No			
1218	TWN-2	28.50	Flow 18.7 6PM	(Yes) No			
			Meter 126886,40	(Yes) No			
1229	TW4-22	57.78	Flow 18.4 Gen	Yes No			
			Meter 65899.70	Yes No			
1225	TW4-24	66.04	Flow 18-0 GPM	Yes No			
			Meter 580019.90	(Yes) No			
1213	TW4-25	101.46	Flow 18,0 GPM	(Yes) No			
			Meter 382255.00	(Yes) No			

Operational Problems (Please list well number):		
Corrective Action(s) Taken (Please list well number):	w.	
N 11		

^{*} Depth is measured to the nearest 0.01 feet.

Date 9/30/2013

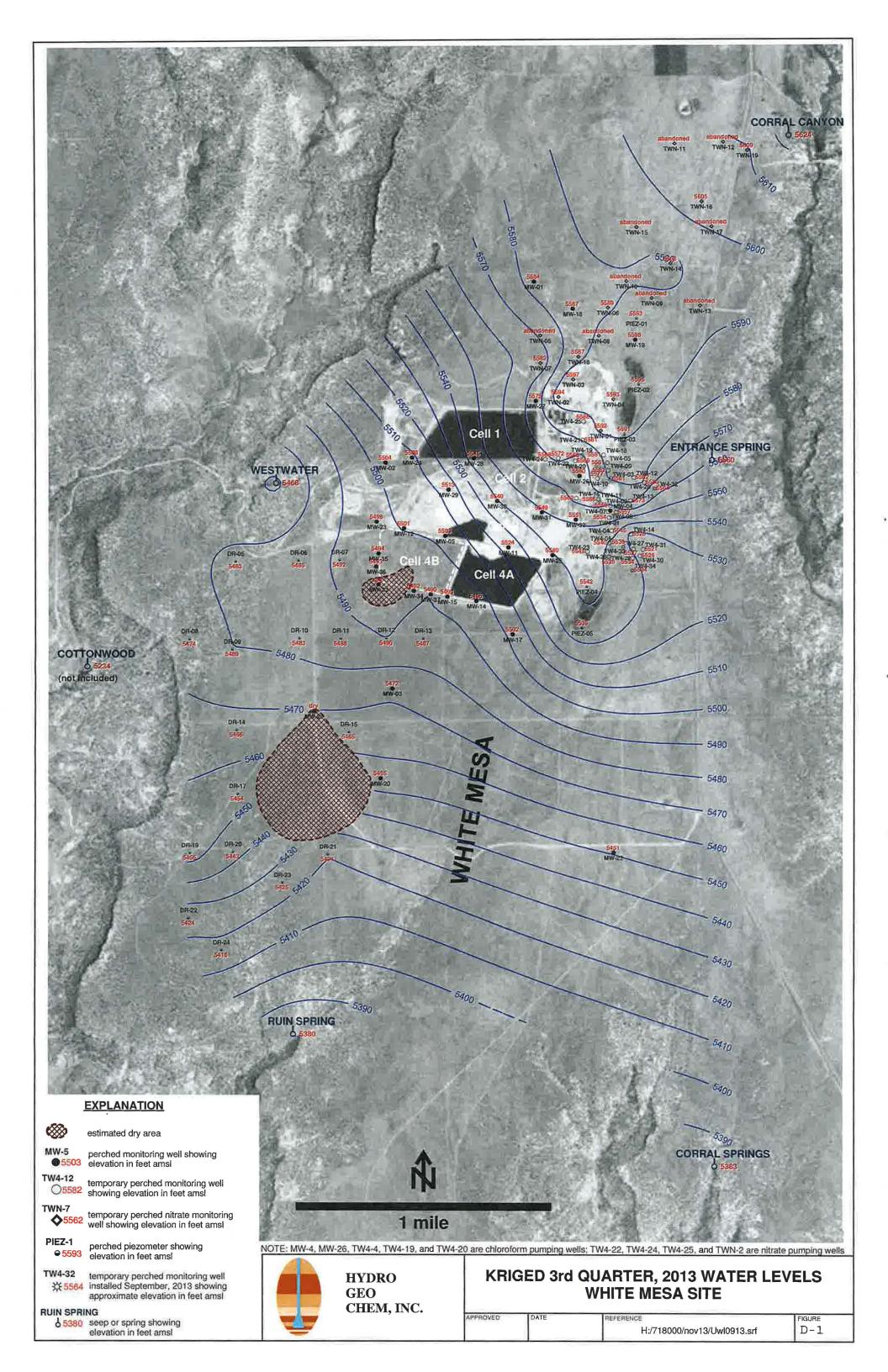
Name Tanner Hollidgy

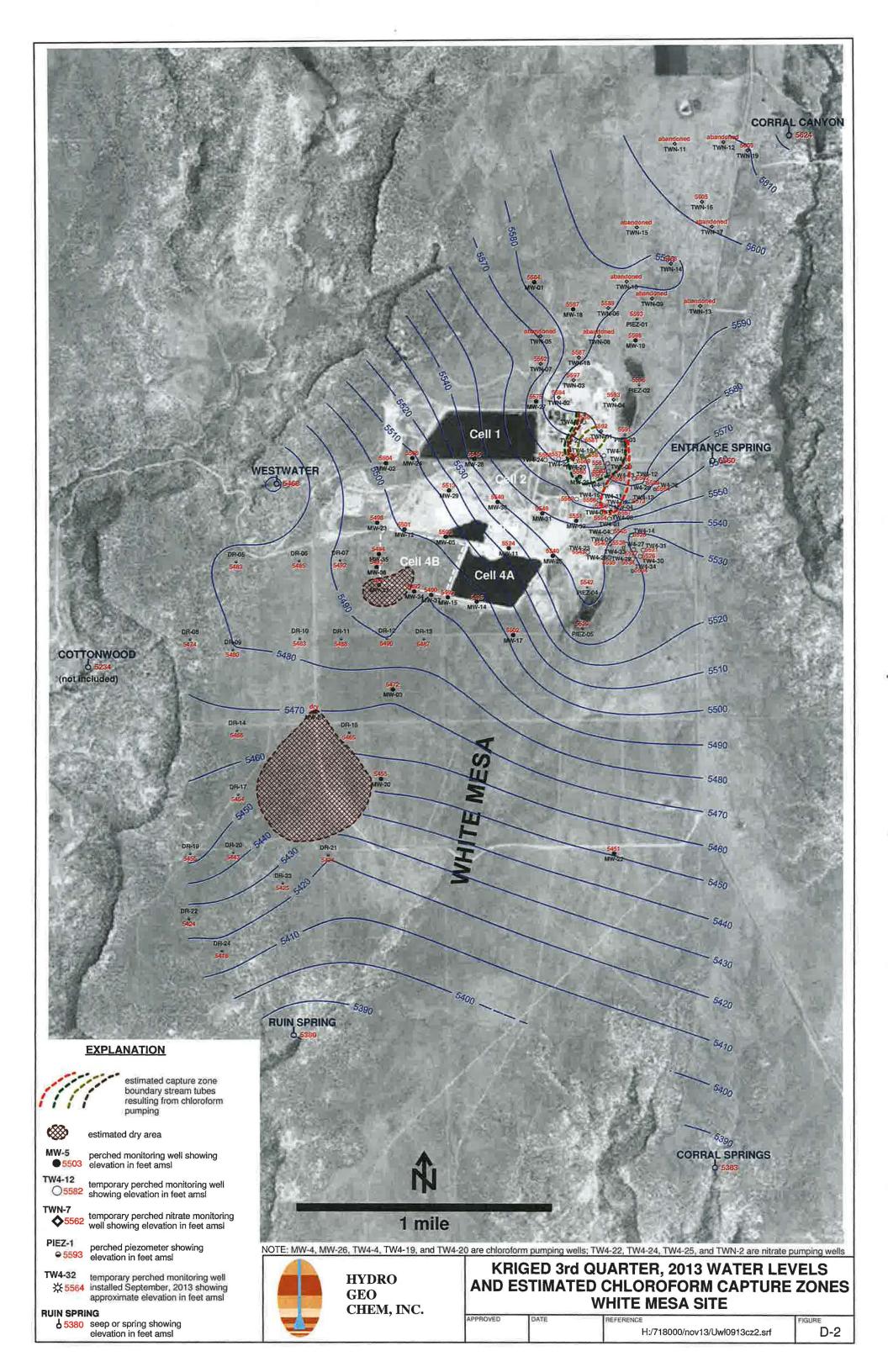
				System Operational (If no note
<u>Time</u>	Well	Depth*	Comments	any problems/corrective actions)
1314	MW-4	68.01	Flow 3.4	Yes No
			Meter 202592,15	Yes No
1310	MW-26	75 69	Flow 16,1	Yes No
			Meter 362324.24	Yes No
1400	TW4-19	72.55	Flow 14.0	Yes No
			Meter 1570324.05	Yes No
1306	TW4-20	66.15	Flow 10.4	Yes No
			Meter 591621.36	Yes No
1317	TW4-4	70_03	Flow 8.0	Yes No
			Meter 187835,60	Yes No
1255	TWN-2	34.39	Flow 18.5	Yes No
			Meter 130625.20	Yes No
1303	TW4-22	59.11	Flow 18.4	Yes No
			Meter 67793,50	Yes No
1300	TW4-24	64.13	Flow 18.0	Yes No
			Meter 600055.40	Yes No
1250	TW4-25	66.23	Flow 18.0	Yes No
			Meter 392521.27	Yes No

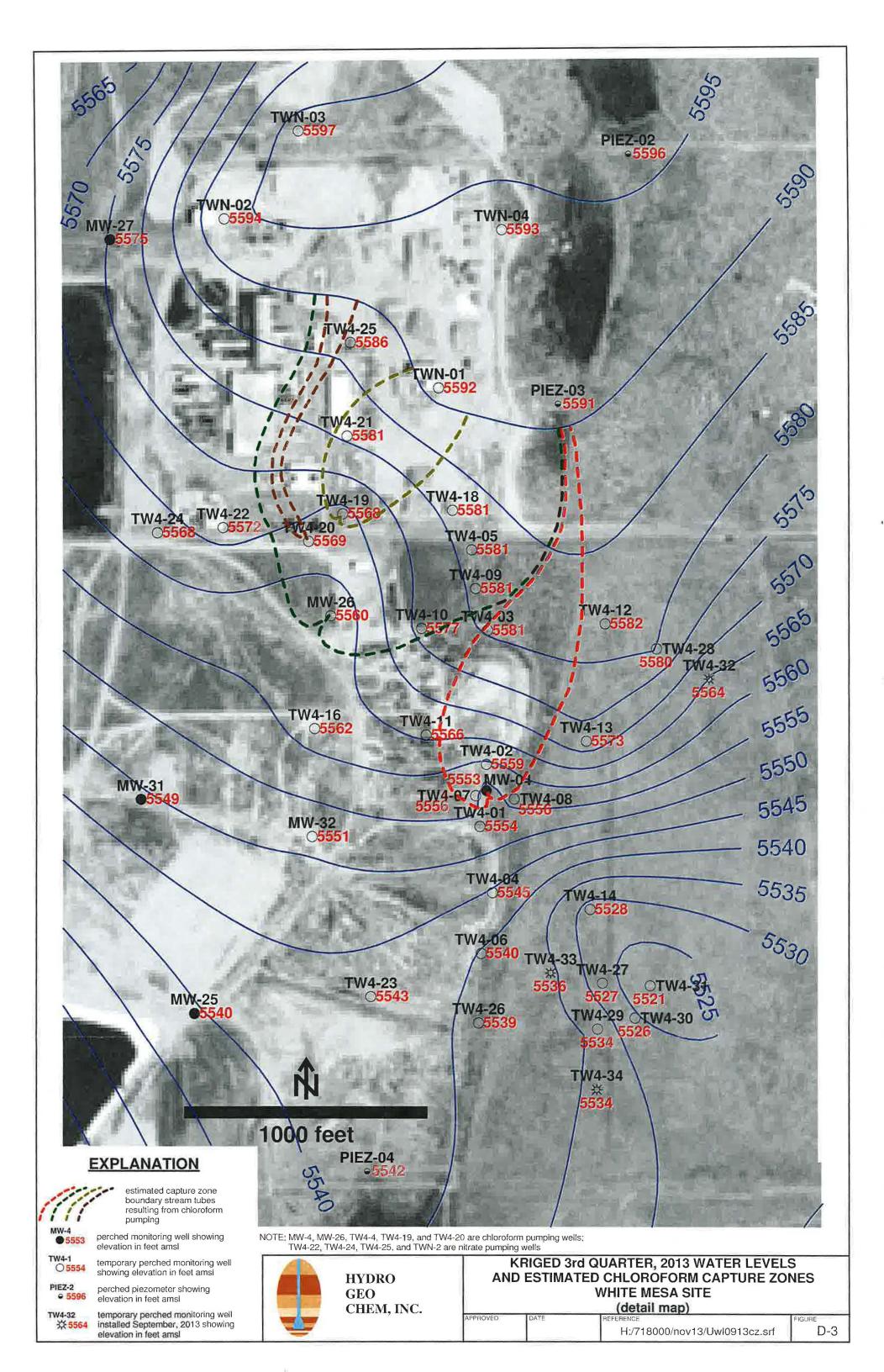
Operational Problems (Please list well number):		
Corrective Action(s) Taken (Please list well number):	2) 1	

^{*} Depth is measured to the nearest 0.01 feet.

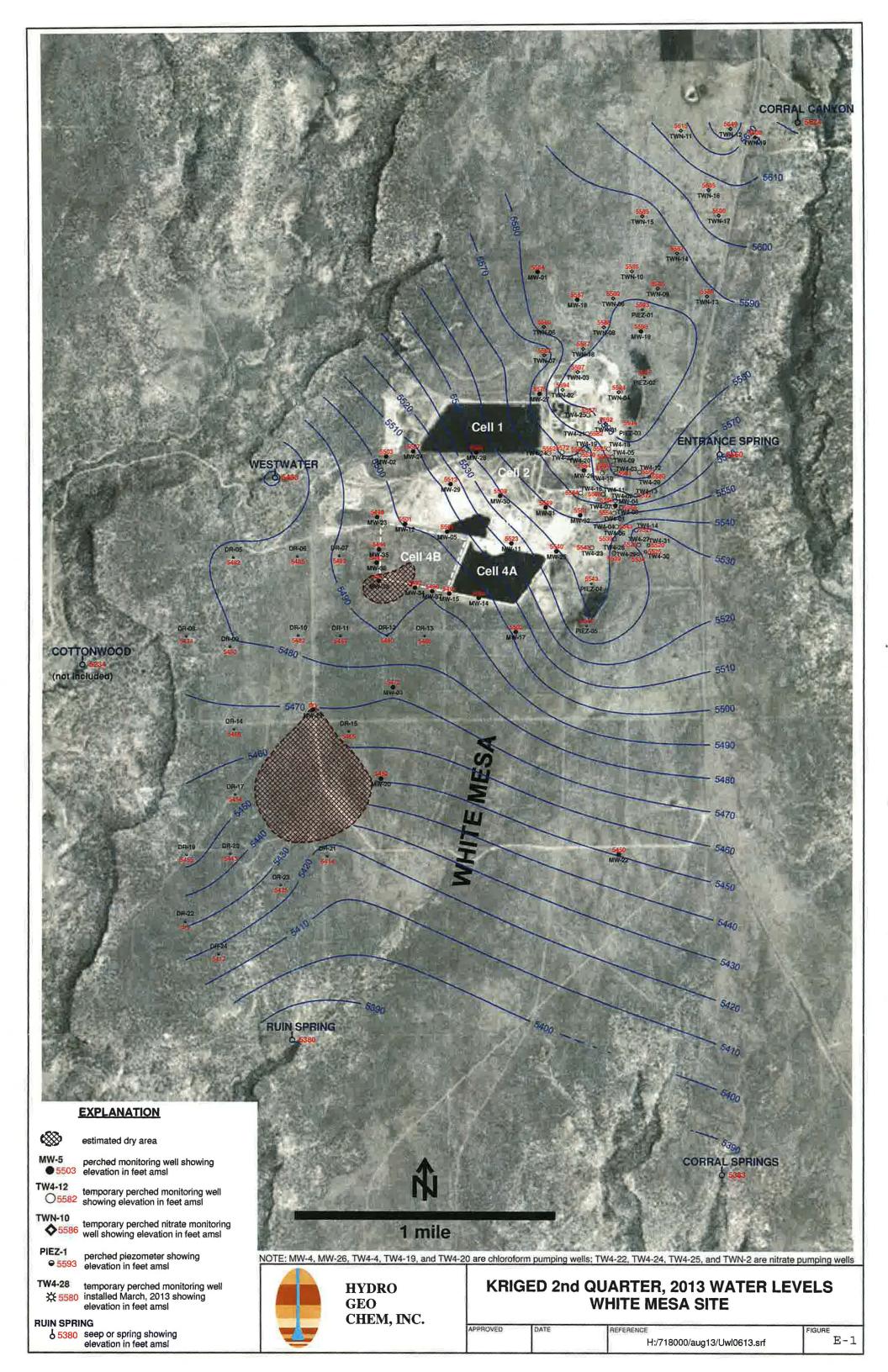
Tab D

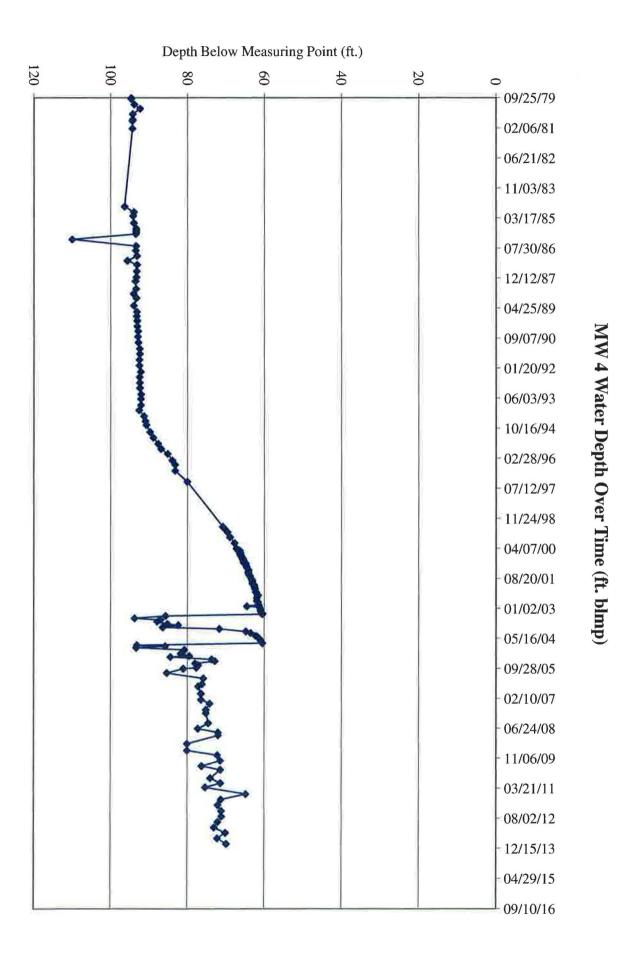

Kriged Current Quarter Groundwater Contour Map, Details Map, and Depth to Water Summary

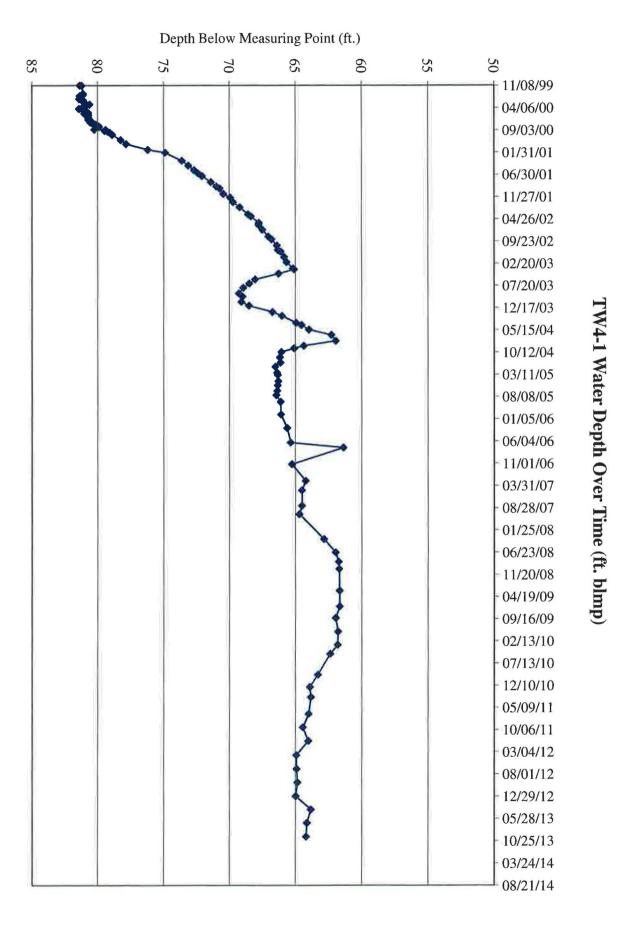

Name: Garrin Palmer, Tanner Holliday


Date: 9/27/2013

TIME	WELL	Static level	TIME	WELL	Static Level	TIME	WELL	Static Level	TIME	WELL	Static Level
1339	MW-1	63.78	1331	MW-4	69.78	1350	PIEZ-1	62.61	NA	DR-1	Abandon
1416	MW-2	109.50	1332	TW4-1	64.21	1359	PIEZ-2	32.43	NA	DR-2	Abandon
1356	MW-3	82.77	1206	TW4-2	65.46	1322	PIEZ-3	46.90	1017	DR-5	82.96
1357	MW-3A	84.79	1323	TW4-3	51.65	1429	PIEZ-4	49.12	1020	DR-6	94.21
800	MW-5	106.46	1345	TW4-4	68.90	1432	PIEZ-5	45.75	1236	DR-7	92.21
805	MW-11	87.28	1320	TW4-5	59.35	1405	TWN-1	56.44	1012	DR-8	51
823	MW-12	108.55	1343	TW4-6	69.16	1312	TWN-2	32.31	1009	DR-9	86.4
757	MW-14	103.60	1329	TW4-7	64.98	1315	TWN-3	37.14	1006	DR-10	77.97
815	MW-15	106.48	1325	TW4-8	64.80	1320	TWN-4	48.54	1026	DR-11	98.1
1352	MW-17	72.96	1321	TW4-9	57.09	NA	TWN-5	Abandon	1028	DR-12	89.62
1342	MW-18	70.39	1318	TW4-10	57.47	1344	TWN-6	75.95	1031	DR-13	69.76
1347	MW-19	57.25	1203	TW4-11	57.70	1336	TWN-7	86.85	959	DR-14	76.29
950	MW-20	85.20	1215	TW4-12	41.99	NA	TWN-8	Abandon	955	DR-15	92.8
921	MW-22	66.78	1217	TW4-13	46.48	NA	TWN-9	Abandon	NA	DR-16	Abandon
1059	MW-23	114.28	1219	TW4-14	85.09	NA	TWN-10	Abandon	1002	DR-17	64.82
1413	MW-24	113.70	1317	TW4-15	65.33	NA	TWN-11	Abandon	NA	DR-18	Abandon
807	MW-25	73.26	1336	TW4-16	61.75	NA	TWN-12	Abandon	939	DR-19	62.97
1317	MW-26	65.33	1338	TW4-17	73.89	NA	TWN-13	Abandon	941	DR-20	55.35
1334	MW-27	52.38	1327	TW4-18	59.90	1352	TWN-14	61.81	924	DR-21	101.19
1409	MW-28	75.70	1205	TW4-19	63.02	NA	TWN-15	Abandon	935	DR-22	60.65
1419	MW-29	101.33	1315	TW4-20	61.00	1355	TWN-16	47.31	945	DR-23	70.56
1422	MW-30	74.90	1329	TW4-21	58.46	NA	TWN-17	Abandon	932	DR-24	43.85
1425	MW-31	67.15	1230	TW4-22	56.75	1317	TWN-18	58.43	NA	DR-25	Abandon
1338	MW-32	73.89	1210	TW4-23	64.25	1041	TWN-19	52.44			
1415	MW-33	DRY	1232	TW4-24	57.82				ta.		
830	MW-34	108.11	1331	TW4-25	59.00	l					
1420	MW-35	112.30	1347	TW4-26	62.74						
1417	MW-36	110.35	1237	TW4-27	80.90						
833	MW-37	109.41	1234	TW4-28	36.65						
			1240	TW4-29	71.77						
			1242	TW4-30	77.27						
			1244	TW4-31	83.36						
			1247	TW4-32	47.41						
			1250	TW4-33	70.30						
			1252	TW4-34	69.30						

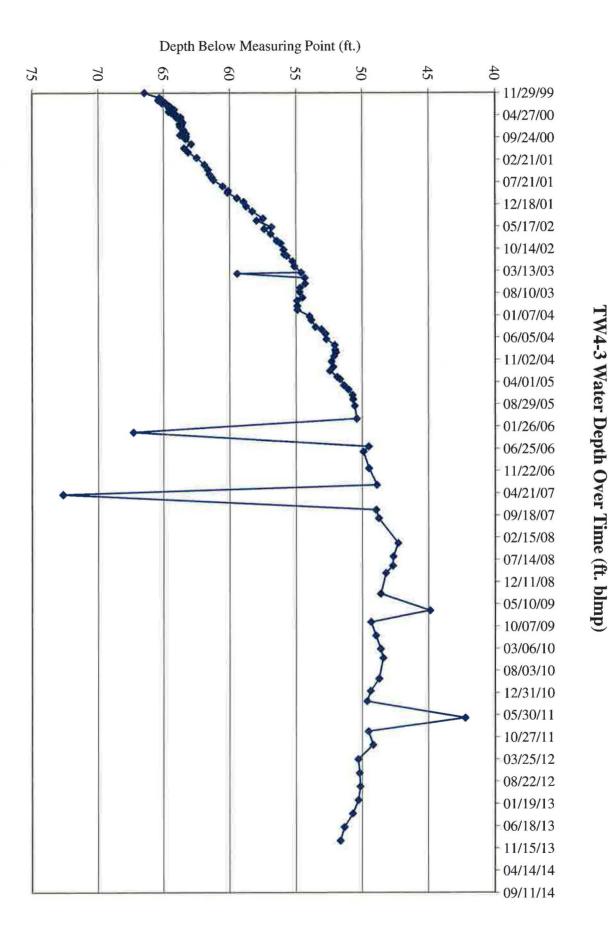

We split up to complete checks so some times may be the same.



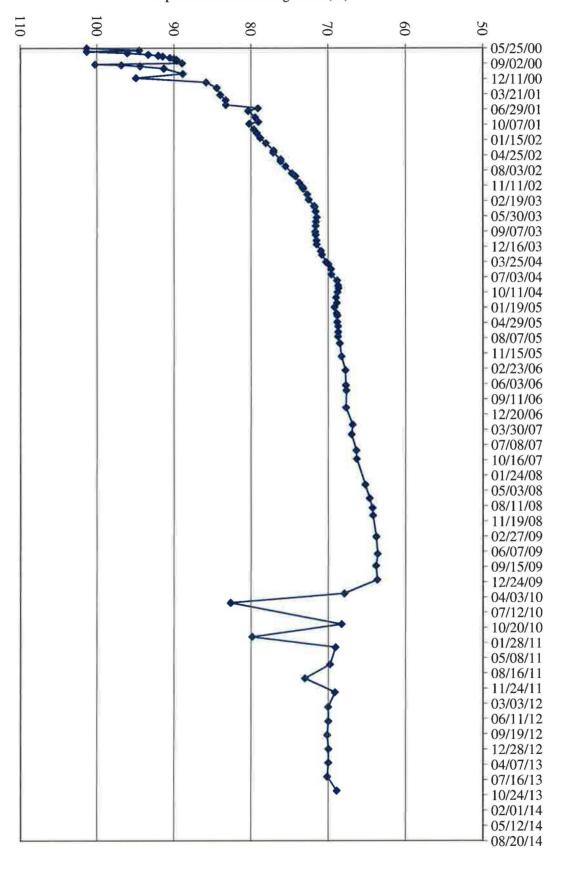

Tab E Kriged Previous Quarter Groundwater Contour Map

Tab F

Hydrographs of Groundwater Elevations Over Time for Chloroform Monitoring Wells

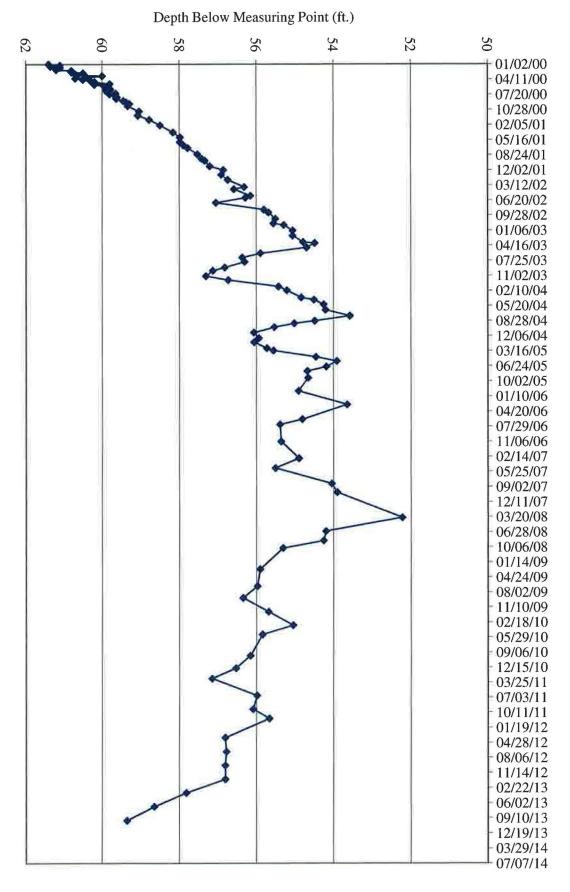


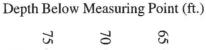
65 55 50 85 80 75 70 11/08/99 04/06/00 09/03/00 01/31/01 06/30/01 11/27/01 04/26/02 09/23/02 02/20/03 07/20/03 12/17/03 05/15/04 10/12/04 03/11/05 08/08/05 01/05/06 06/04/06 11/01/06 03/31/07 08/28/07 01/25/08 06/23/08 - 11/20/08 -04/19/09 09/16/09 02/13/10 07/13/10 12/10/10 05/09/11 10/06/11 03/04/12 08/01/12 12/29/12 05/28/13 10/25/13 03/24/14

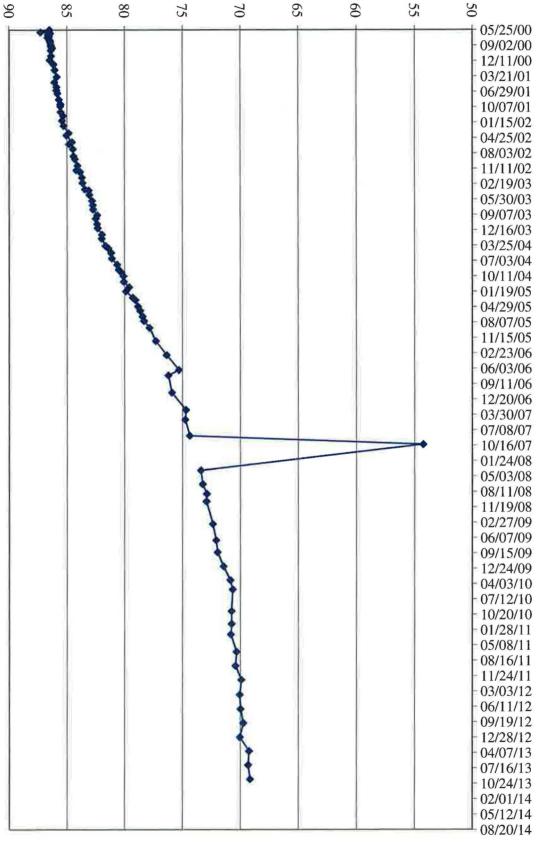

Depth Below Measuring Point (ft.)

TW4-2 Water Depth Over Time (ft. blmp)

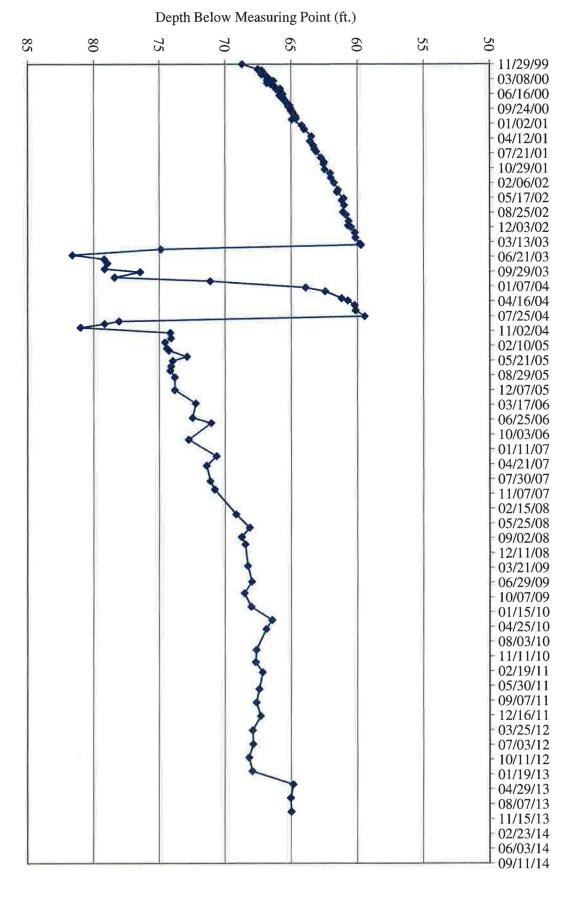
08/21/14

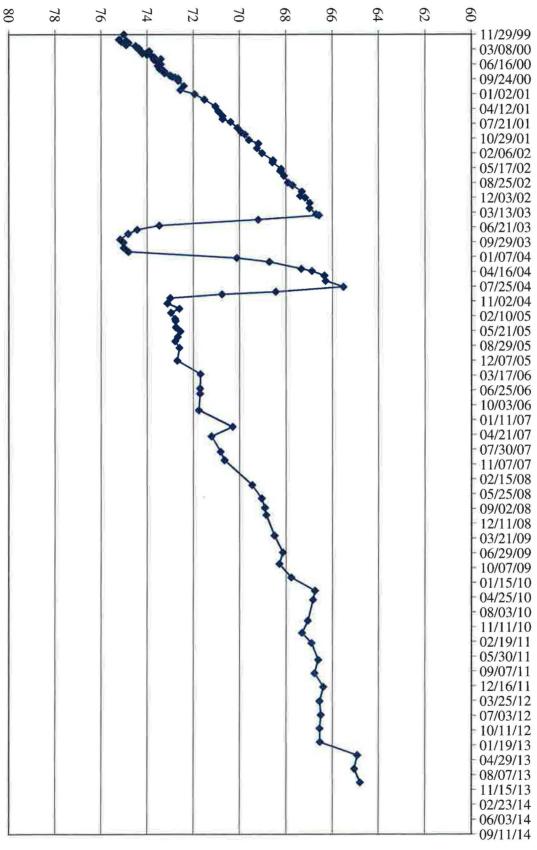



Depth Below Measuring Point (ft.)

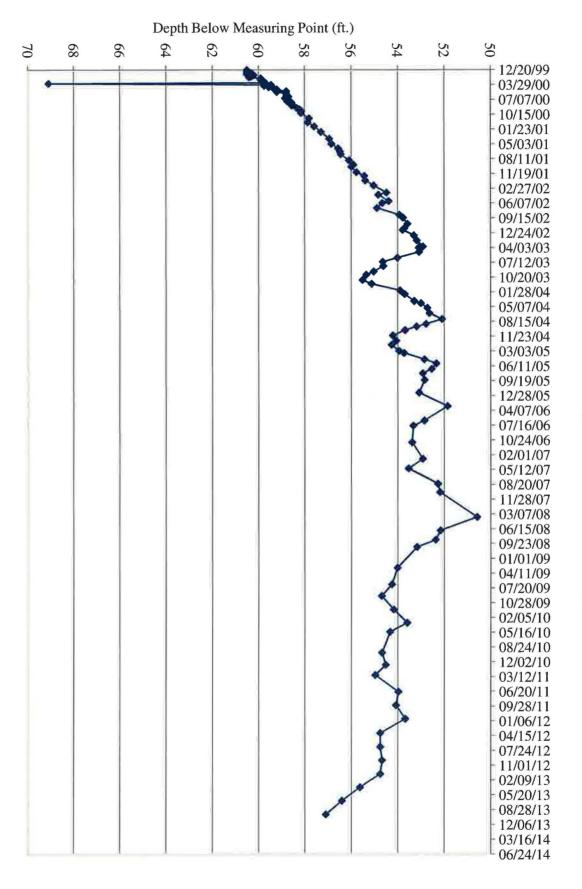


TW4-4 Water Depth Over Time (ft. blmp)



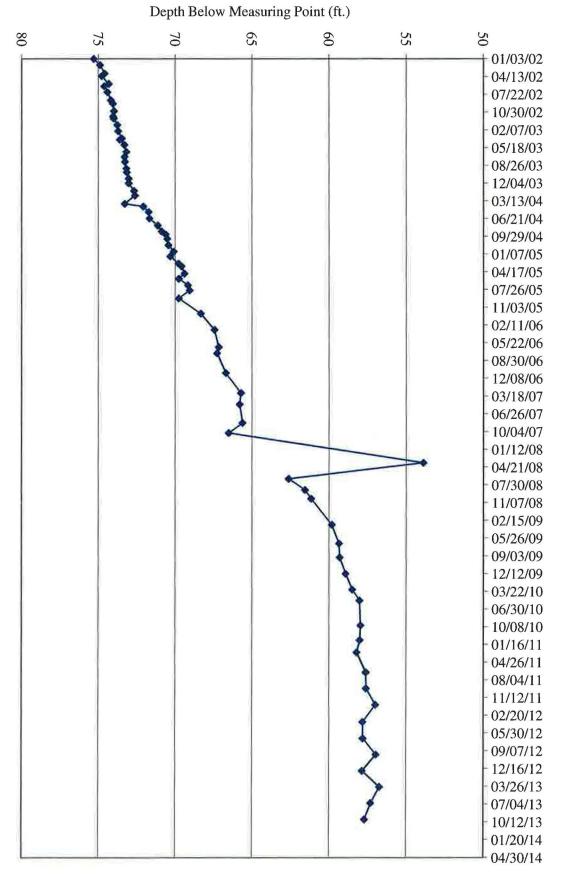


TW4-6 Water Depth Over Time (ft. blmp)


TW4-7 Water Depth Over Time (ft. blmp)

Depth Below Measuring Point (ft.)

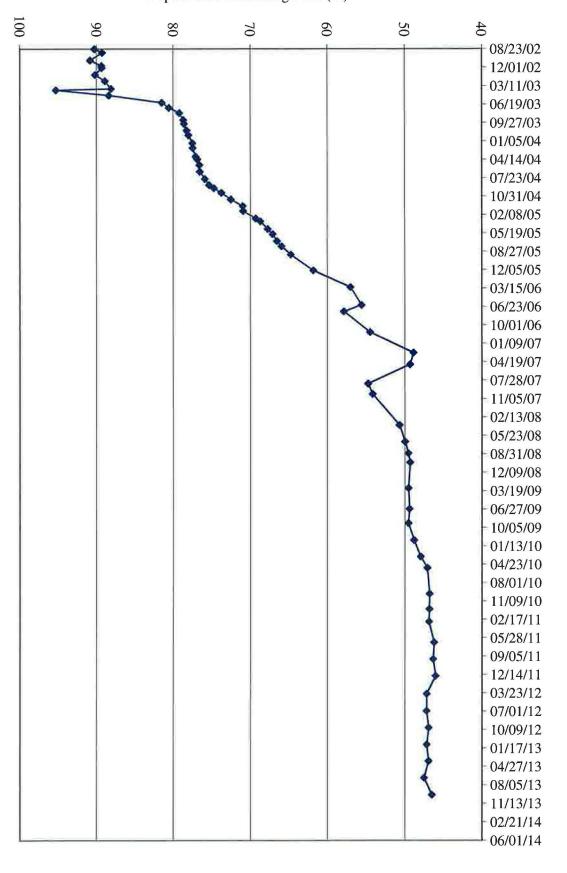
TW4-8 Water Depth Over Time (ft. blmp)


TW4-9 Water Depth Over Time (ft. blmp)

Depth Below Measuring Point (ft.) 59 58 56 55 54 53 01/03/02 04/13/02 07/22/02 10/30/02 02/07/03 05/18/03 08/26/03 - 12/04/03 03/13/04 06/21/04 09/29/04 01/07/05 04/17/05 07/26/05 11/03/05 02/11/06 05/22/06 08/30/06 12/08/06 03/18/07 06/26/07 10/04/07 01/12/08 04/21/08 07/30/08 11/07/08 02/15/09 05/26/09 09/03/09 12/12/09 03/22/10 06/30/10 10/08/10 01/16/11 04/26/11 08/04/11 11/12/11 02/20/12 05/30/12 09/07/12 12/16/12 03/26/13 07/04/13 - 10/12/13 01/20/14

TW4-10 Water Depth Over Time (ft. blmp)

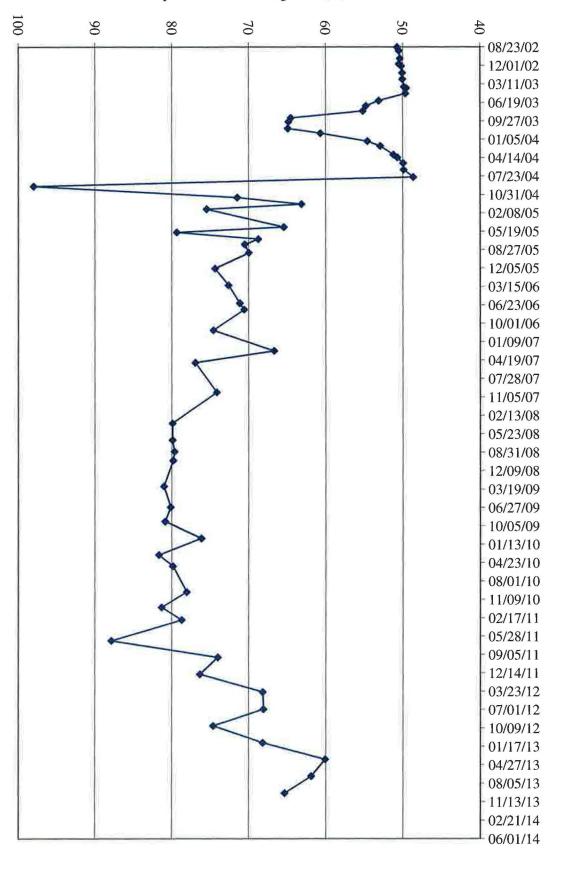
04/30/14



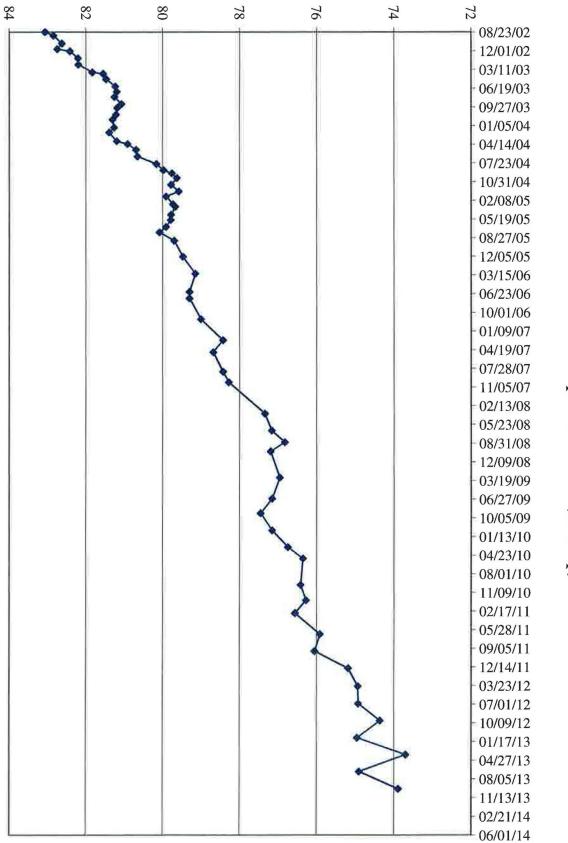
Depth Below Measuring Point (ft.) 42 48 46 44 40 36 34 08/23/02 12/01/02 03/11/03 06/19/03 09/27/03 01/05/04 04/14/04 07/23/04 10/31/04 02/08/05 05/19/05 08/27/05 12/05/05 03/15/06 06/23/06 10/01/06 01/09/07 04/19/07 07/28/07 11/05/07 02/13/08 05/23/08 08/31/08 12/09/08 03/19/09 06/27/09 10/05/09 01/13/10 04/23/10 08/01/10 11/09/10 -02/17/11 05/28/11 09/05/11 - 12/14/11 03/23/12 07/01/12 - 10/09/12 01/17/13 - 04/27/13 08/05/13 - 11/13/13 02/21/14

TW4-12 Water Depth Over Time (ft. blmp)

06/01/14


Depth Below Measuring Point (ft.)

TW4-13 Water Depth Over Time (ft. blmp)

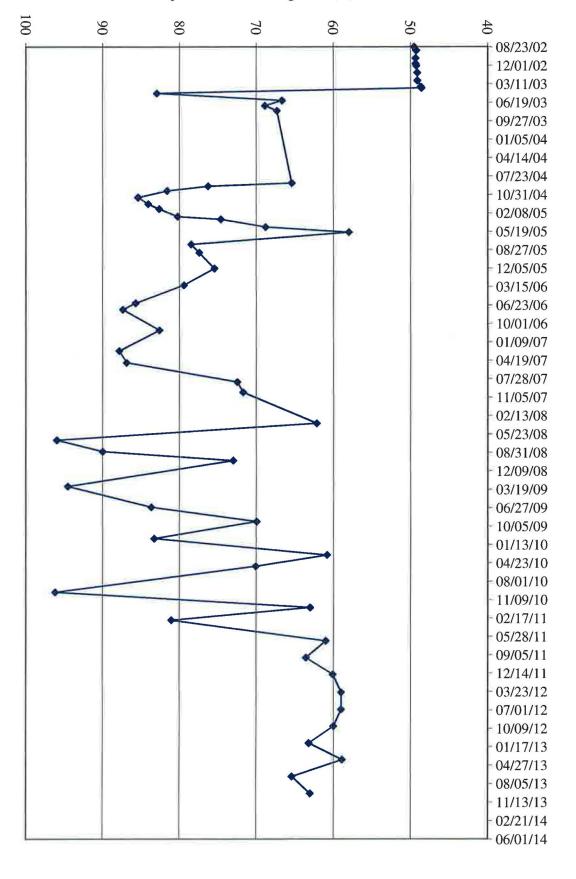

TW4-14 Water Depth Over Time (ft. blmp)

MW-26 Water Depth Over Time (ft. blmp)

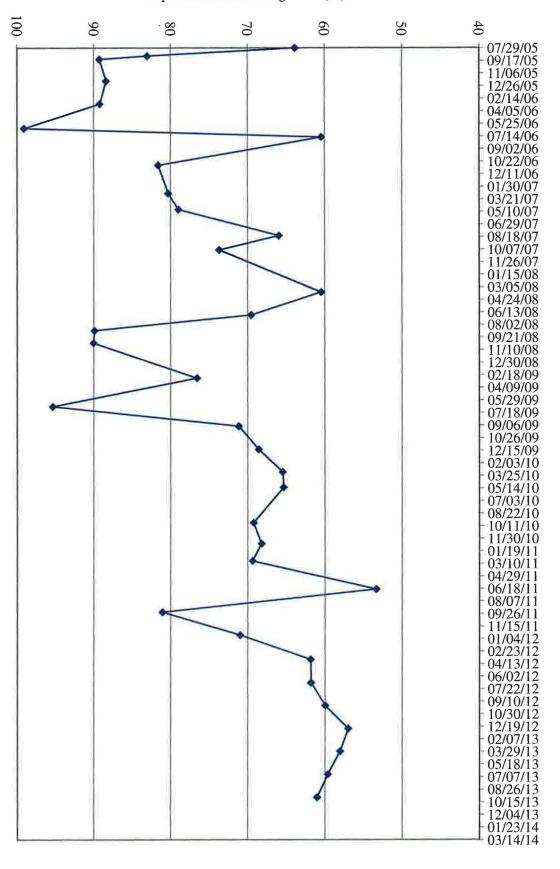
Depth Below Measuring Point (ft.) 75 70 65 55 50 80 08/23/02 - 12/01/02 03/11/03 06/19/03 09/27/03 01/05/04 04/14/04 07/23/04 10/31/04 02/08/05 05/19/05 08/27/05 12/05/05 03/15/06 06/23/06 10/01/06 01/09/07 04/19/07 07/28/07 11/05/07 02/13/08 05/23/08 08/31/08 12/09/08 03/19/09 06/27/09 10/05/09 01/13/10 04/23/10 08/01/10 11/09/10 02/17/11 05/28/11 09/05/11 12/14/11 03/23/12 07/01/12 10/09/12 01/17/13 04/27/13 08/05/13 11/13/13 02/21/14 06/01/14

TW4-16 Water Depth Over Time (ft. blmp)

Depth Below Measuring Point (ft.)

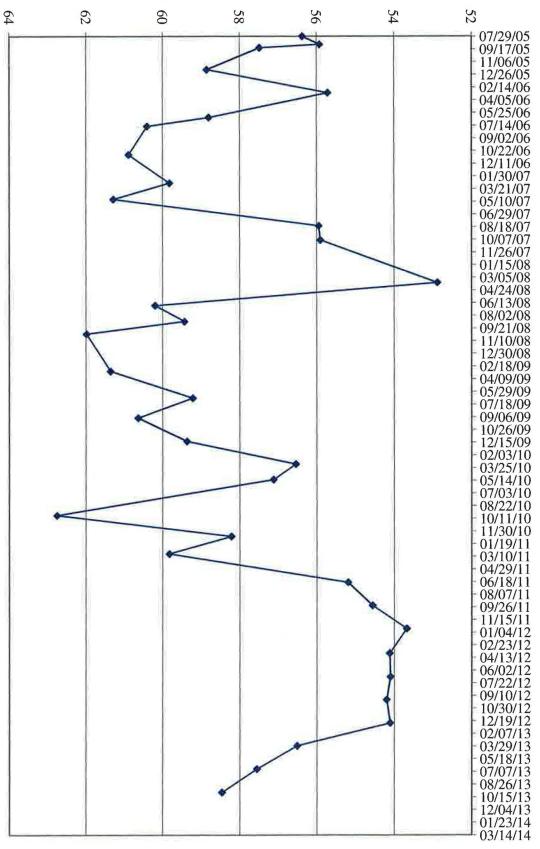

MW-32 Water Depth Over Time (ft. blmp)

50 40 70 60 30 20 10 0 08/23/02 12/01/02 03/11/03 06/19/03 09/27/03 01/05/04 04/14/04 07/23/04 10/31/04 02/08/05 05/19/05 08/27/05 12/05/05 03/15/06 06/23/06 10/01/06 01/09/07 04/19/07 07/28/07 - 11/05/07 02/13/08 05/23/08 08/31/08 12/09/08 03/19/09 06/27/09 10/05/09 01/13/10 04/23/10 08/01/10 11/09/10 02/17/11 05/28/11 09/05/11 12/14/11 03/23/12 07/01/12 10/09/12 01/17/13 04/27/13

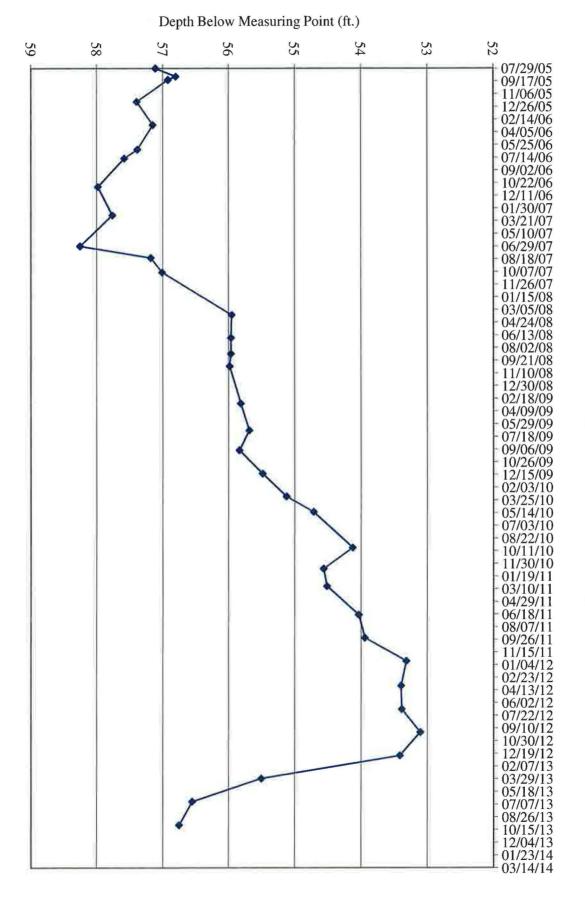

Depth Below Measuring Point (ft.)

TW4-18 Water Depth Over Time (ft. blmp)

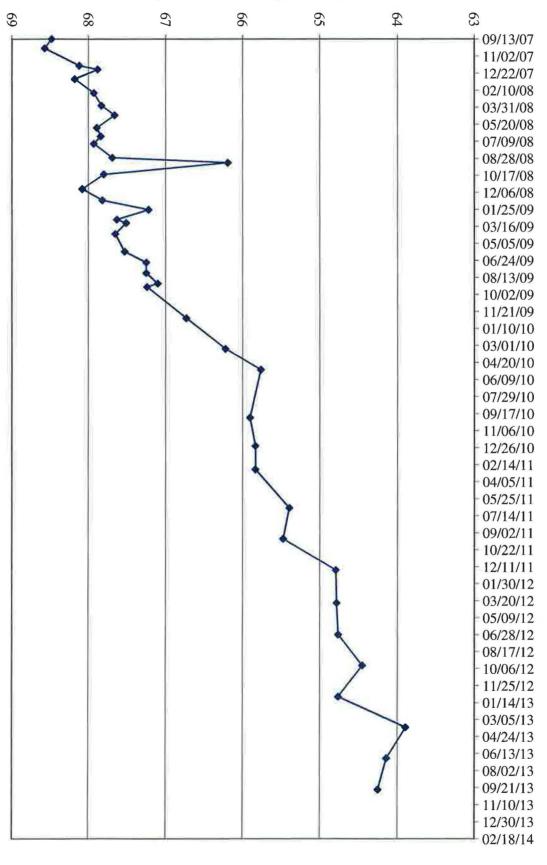
- 08/05/13 - 11/13/13 - 02/21/14 - 06/01/14



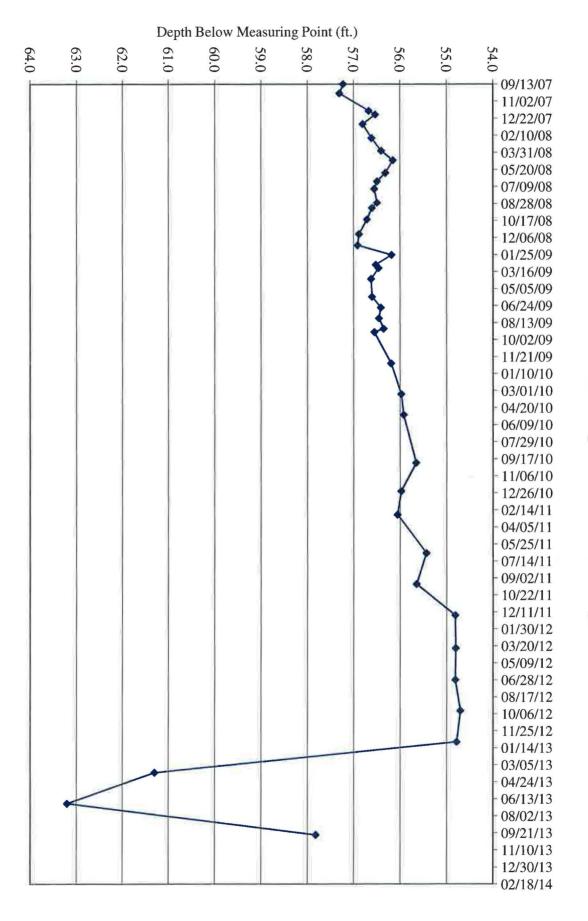
TW4-19 Water Depth Over Time (ft. blmp)

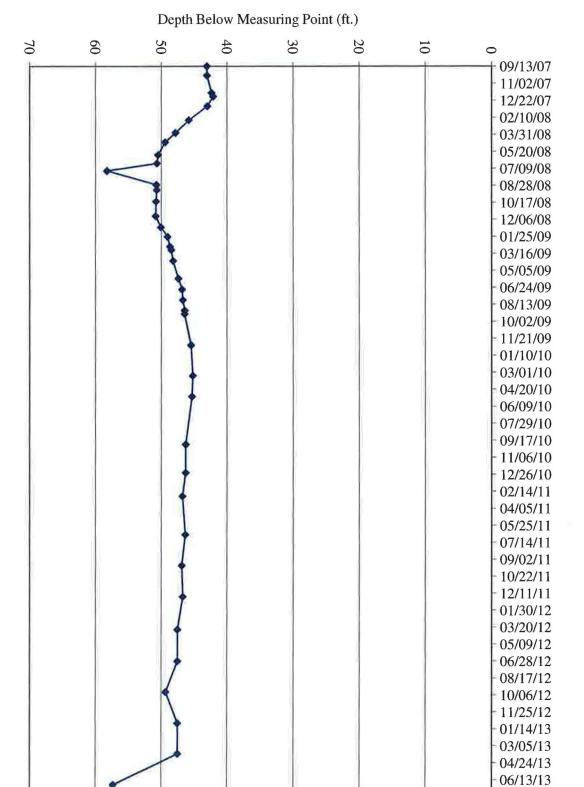

TW4-20 Water Depth Over Time (ft. blmp)

Depth Below Measuring Point (ft.)

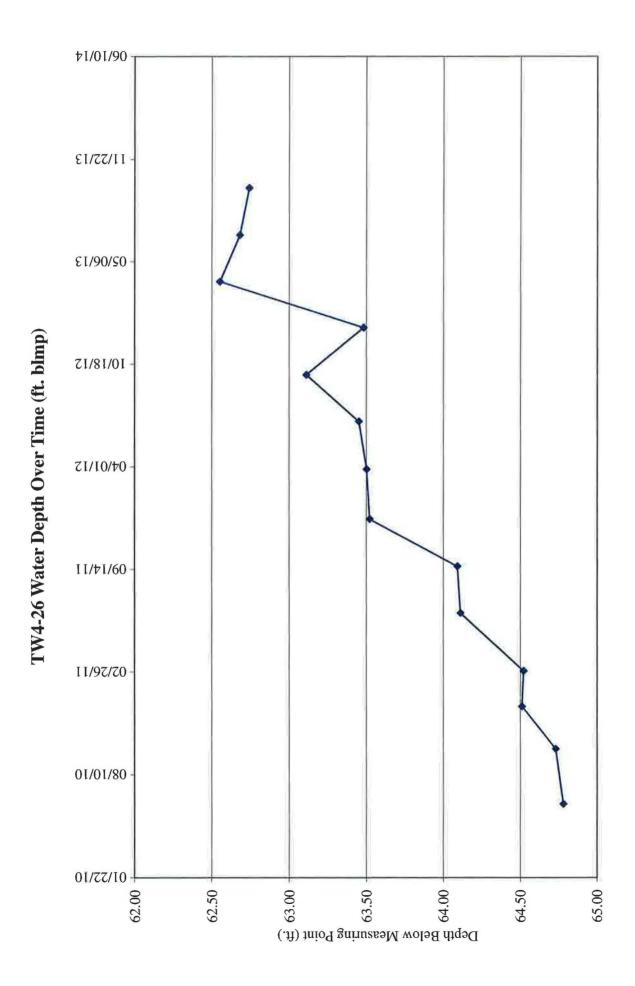


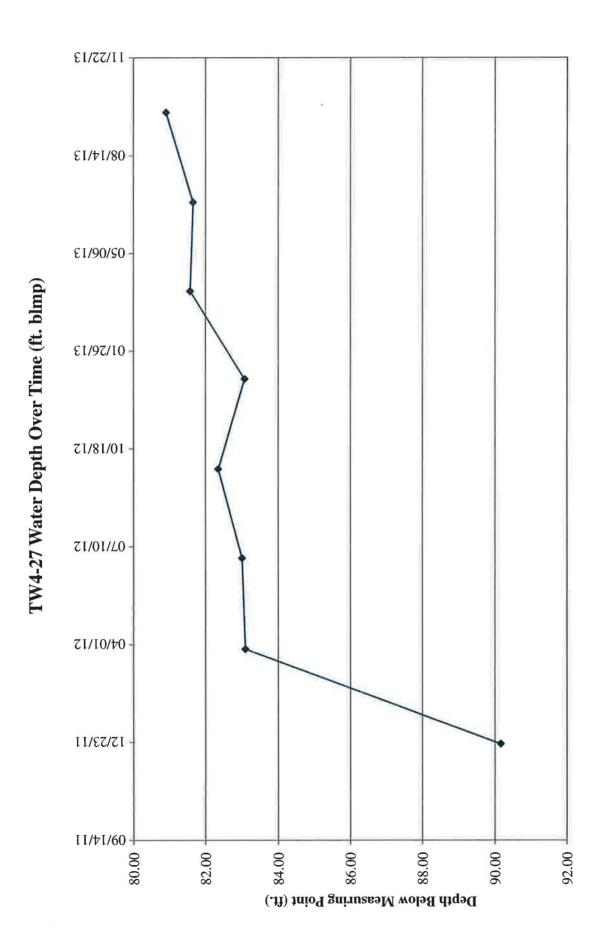
TW4-21 Water Depth Over Time (ft. blmp)

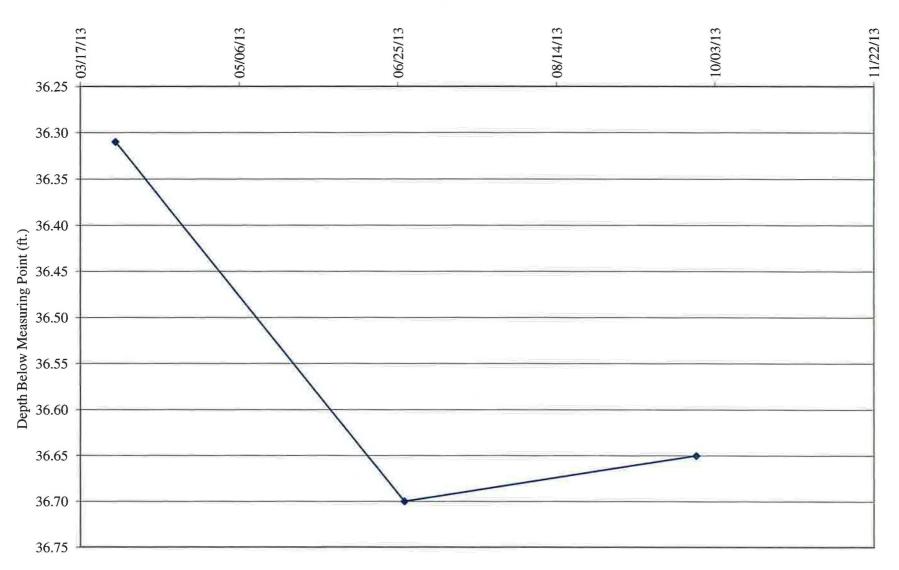

TW4-22 Water Depth Over Time (ft. blmp)

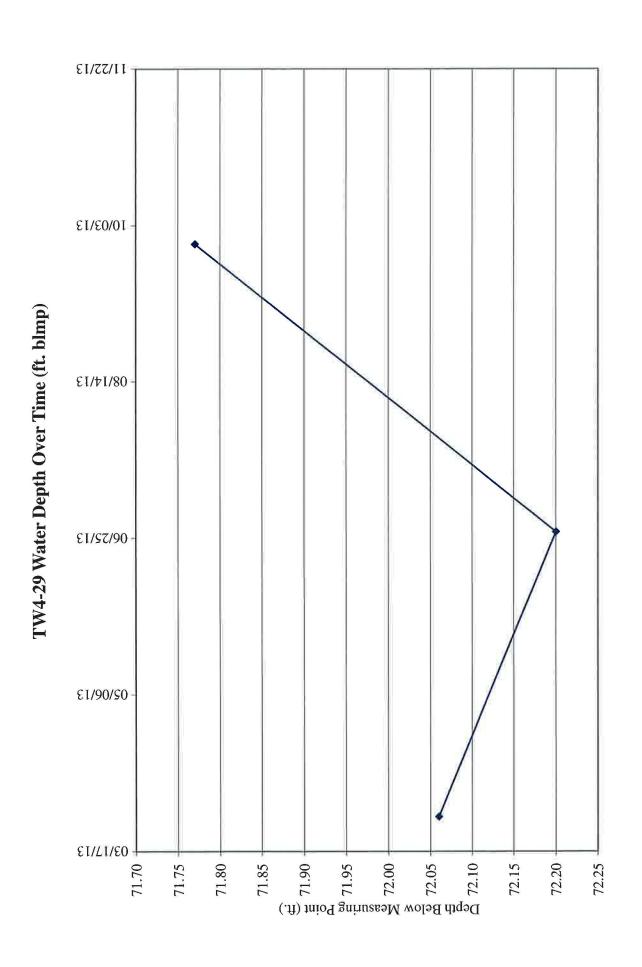

Depth Below Measuring Point (ft.)

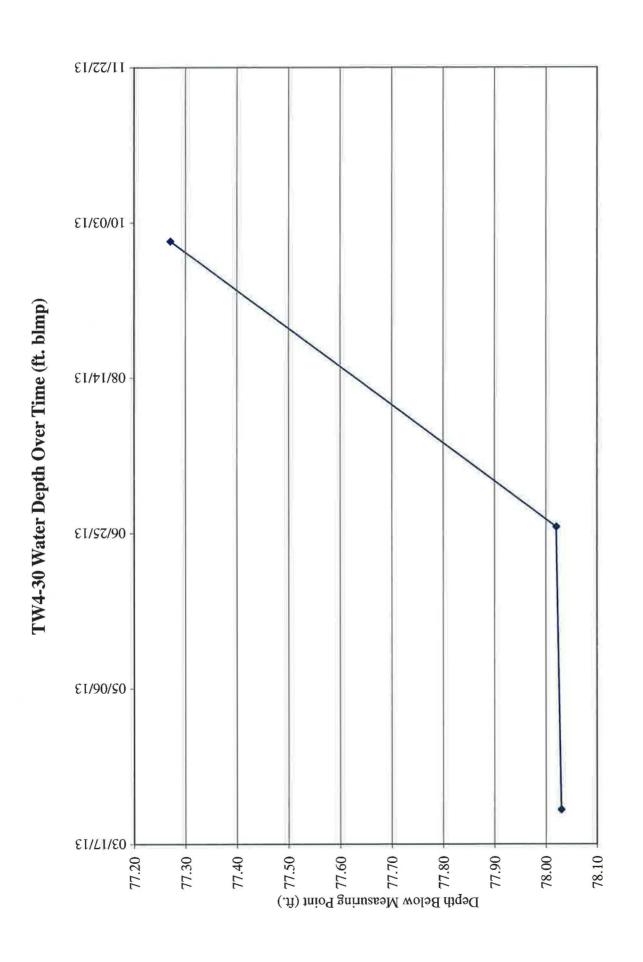
TW4-23 Water Depth Over Time (ft. blmp)

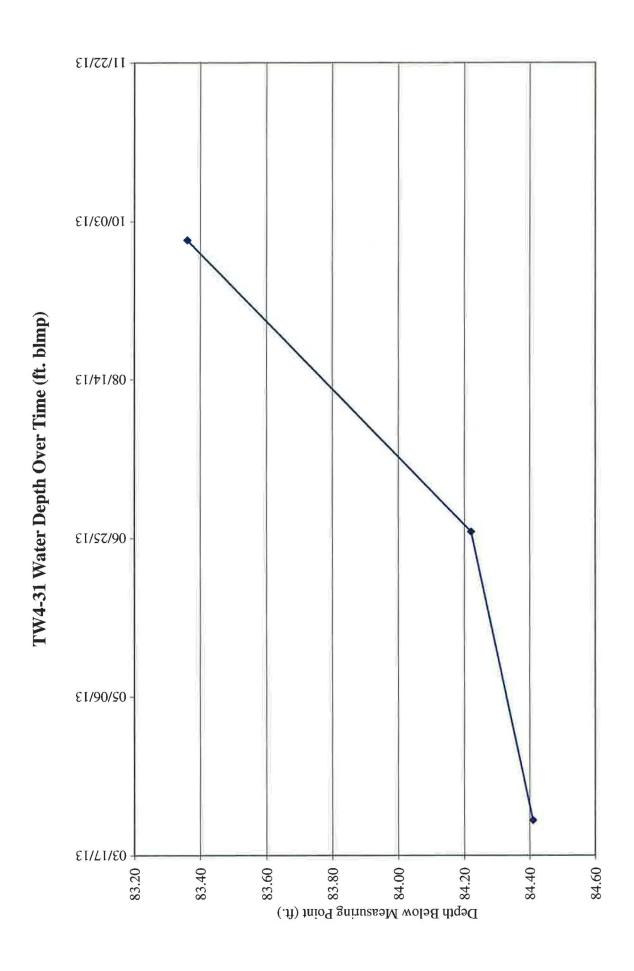



TW4-24 Water Depth Over Time (ft. blmp)


TW4-25 Water Depth Over Time (ft. blmp)


08/02/13 09/21/13 11/10/13 12/30/13 02/18/14





TW4-28 Water Depth Over Time (ft. blmp)

Tab G

Depths to Groundwater and Elevations Over Time for Chloroform Monitoring Wells

Water Levels and Data over Time White Mesa Mill - Well MW4

Water Land Point Depth to De)f —
Elevation (WL)Surface (LSD)Elevation (MP)Length Of)f
(WL) (LSD) (MP) Riser (L) Monitoring (blw.MP) (blw.LSD) Well 5,620.77 5,622.33 1.56 123.6)f —
(WL) (LSD) (MP) Riser (L) Monitoring (blw.MP) (blw.LSD) Well 5,620.77 5,622.33 1.56 123.6	_
	_
5 527 63 00/25/70 04 70 02 14	-
33.14 37.10 33.14	
5,527.63 10/10/79 94.70 93.14	
5,528.43 01/10/80 93.90 92.34	
5,529.93 03/20/80 92.40 90.84	
5,528.03 06/17/80 94.30 92.74	
5,528.03 09/15/80 94.30 92.74	
5,527.93 10/08/80 94.40 92.84	
5,527.93 02/12/81 94.40 92.84	
5,525.93 09/01/84 96.40 94.84	
5,528.33 12/01/84 94.00 92.44	
5,528.13 02/01/85 94.20 92.64	
5,528.33 06/01/85 94.00 92.44	
5,528.93 09/01/85 93.40 91.84	
5,528.93 10/01/85 93.40 91.84	
5,528.93 11/01/85 93.40 91.84	
5,528.83 12/01/85 93.50 91.94	
5,512.33 03/01/86 110.00 108.44	
5,528.91 06/19/86 93.42 91.86	
5,528.83 09/01/86 93.50 91.94	
5,529.16 12/01/86 93.17 91.61	
5,526.66 02/20/87 95.67 94.11	
5,529.16 04/28/87 93.17 91.61	
5,529.08 08/14/87 93.25 91.69	
5,529.00 11/20/87 93.33 91.77	
5,528.75 01/26/88 93.58 92.02	
5,528.91 06/01/88 93.42 91.86	
5,528.25 08/23/88 94.08 92.52	
5,529.00 11/02/88 93.33 91.77	
5,528.33 03/09/89 94.00 92.44	
5,529.10 06/21/89 93.23 91.67	
5,529.06 09/01/89 93.27 91.71	
5,529.21 11/15/89 93.12 91.56	
5,529.22 02/16/90 93.11 91.55	
5,529.43 05/08/90 92.90 91.34	
5,529.40 08/07/90 92.93 91.37	
5,529.53 11/13/90 92.80 91.24	
5,529.86 02/27/91 92.47 90.91	
5,529.91 05/21/91 92.42 90.86	
5,529.77 08/27/91 92.56 91.00	
5,529.79 12/03/91 92.54 90.98	
5,530.13 03/17/92 92.20 90.64	
5,529.85 06/11/92 92.48 90.92	
5,529.90 09/13/92 92.43 90.87	

Water Levels and Data over Time White Mesa Mill - Well MW4

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,620.77	5,622.33	1.56				123.6
5,529.92				12/09/92	92.41	90.85	
5,530.25				03/24/93	92.08	90.52	
5,530.20				06/08/93	92.13	90.57	
5,530.19				09/22/93	92.14	90.58	
5,529.75				12/14/93	92.58	91.02	
5,530.98				03/24/94	91.35	89.79	
5,531.35				06/15/94	90.98	89.42	
5,531.62				08/18/94	90.71	89.15	
5,532.58				12/13/94	89.75	88.19	
5,533.42				03/16/95	88.91	87.35	
5,534.70				06/27/95	87.63	86.07	
5,535.44				09/20/95	86.89	85.33	
5,537.16				12/11/95	85.17	83.61	
5,538.37				03/28/96	83.96	82.40	
5,539.10				06/07/96	83.23	81.67	
5,539.13				09/16/96	83.20	81.64	
5,542.29				03/20/97	80.04	78.48	
5,551.58				04/07/99	70.75	69.19	
5,552.08				05/11/99	70.25	68.69	
5,552.83				07/06/99	69.50	67.94	
5,553.47				09/28/99	68.86	67.30	
5,554.63				01/03/00	67.70	66.14	
5,555.13				04/04/00	67.20	65.64	
5,555.73				05/02/00	66.60	65.04	
5,556.03				05/11/00	66.30	64.74	
5,555.73				05/15/00	66.60	65.04	
5,555.98				05/25/00	66.35	64.79	
5,556.05				06/09/00	66.28	64.72	
5,556.18				06/16/00	66.15	64.59	
5,556.05				06/26/00	66.28	64.72	
5,556.15				07/06/00	66.18	64.62	
5,556.18				07/13/00	66.15	64.59	
5,556.17				07/18/00	66.16	64.60	
5,556.26				07/25/00	66.07	64.51	
5,556.35				08/02/00	65.98	64.42	
5,556.38				08/09/00	65.95	64.39	
5,556.39				08/15/00	65.94	64.38	
5,556.57				08/31/00	65.76	64.20	
5,556.68				09/08/00	65.65	64.09	
5,556.73				09/13/00	65.60	64.04	
5,556.82				09/20/00	65.51	63.95	
5,556.84				09/29/00	65.49	63.93	
5,556.81				10/05/00	65.52	63.96	

Water Levels and Data over Time White Mesa Mill - Well MW4

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
- /	5,620.77	5,622.33	1.56				123.6
5,556.89				10/12/00	65.44	63.88	
5,556.98				10/19/00	65.35	63.79	
5,557.01				10/23/00	65.32	63.76	
5,557.14				11/09/00	65.19	63.63	
5,557.17				11/14/00	65.16	63.60	
5,556.95				11/21/00	65.38	63.82	
5,557.08				11/30/00	65.25	63.69	
5,557.55				12/07/00	64.78	63.22	
5,557.66				01/14/01	64.67	63.11	
5,557.78				02/09/01	64.55	62.99	
5,558.28				03/29/01	64.05	62.49	
5,558.23				04/30/01	64.10	62.54	
5,558.31				05/31/01	64.02	62.46	
5,558.49				06/22/01	63.84	62.28	
5,558.66				07/10/01	63.67	62.11	
5,559.01				08/20/01	63.32	61.76	
5,559.24				09/19/01	63.09	61.53	
5,559.26				10/02/01	63.07	61.51	
5,559.27				11/08/01	63.06	61.50	
5,559.77				12/03/01	62.56	61.00	
5,559.78				01/03/02	62.55	60.99	
5,559.96				02/06/02	62.37	60.81	
5,560.16				03/26/02	62.17	60.61	
5,560.28				04/09/02	62.05	60.49	
5,560.76				05/23/02	61.57	60.01	
5,560.58				06/05/02	61.75	60.19	
5,560.43				07/08/02	61.90	60.34	
5,560.44				08/23/02	61.89	60.33	
5,560.71				09/11/02	61.62	60.06	
5,560.89				10/23/02	61.44	59.88	
5,557.86				11/22/02	64.47	62.91	
5,561.10				12/03/02	61.23	59.67	
5,561.39				01/09/03	60.94	59.38	
5,561.41				02/12/03	60.92	59.36	
5,561.93				03/26/03	60.40	58.84	
5,561.85				04/02/03	60.48	58.92	
5,536.62				05/01/03	85.71	84.15	
5,528.56				06/09/03	93.77	92.21	
5,535.28				07/07/03	87.05	85.49	
5,534.44				08/04/03	87.89	86.33	
5,537.10				09/11/03	85.23	83.67	
5,539.96				10/02/03	82.37	80.81	
5,535.91				11/07/03	86.42	84.86	
- 100							

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,620.77	5,622.33	1.56				123.6
5,550.70				12/03/03	71.63	70.07	
5,557.58				01/15/04	64.75	63.19	
5,558.80				02/10/04	63.53	61.97	
5,560.08				03/28/04	62.25	60.69	
5,560.55				04/12/04	61.78	60.22	
5,561.06				05/13/04	61.27	59.71	
5,561.48				06/18/04	60.85	59.29	
5,561.86				07/28/04	60.47	58.91	
5,529.17				08/30/04	93.16	91.60	
5,536.55				09/16/04	85.78	84.22	
5,529.00				10/11/04	93.33	91.77	
5,541.55				11/16/04	80.78	79.22	
5,541.12				12/22/04	81.21	79.65	
5,540.59				01/18/05	81.74	80.18	
5,542.85				02/28/05	79.48	77.92	
5,537.91				03/15/05	84.42	82.86	
5,548.67				04/26/05	73.66	72.10	
5,549.53				05/24/05	72.80	71.24	
5,544.36				06/30/05	77.97	76.41	
5,545.16				07/29/05	77.17	75.61	
5,544.67				09/12/05	77.66	76.10	
5,541.28				09/27/05	81.05	79.49	
5,536.96				12/07/05	85.37	83.81	
5,546.49				03/08/06	75.84	74.28	
5,546.15				06/13/06	76.18	74.62	
5,545.15				07/18/06	77.18	75.62	
5,545.91				11/17/06	76.42	74.86	
5,545.90				02/27/07	76.43	74.87	
5,548.16				05/02/07	74.17	72.61	
5,547.20				08/13/07	75.13	73.57	
5,547.20				10/10/07	75.13	73.57	
5,547.79				03/26/08	74.54	72.98	
5,545.09				06/25/08	77.24	75.68	
5,550.36				08/26/08	71.97	70.41	
5,550.39				10/14/08	71.94	70.38	
5,542.25				03/03/09	80.08	78.52	
5,542.25				06/24/09	80.08	78.52	
5,550.19				09/10/09	72.14	70.58	
5,550.94				12/11/09	71.39	69.83	
5,546.08				03/11/10	76.25	74.69	
5,550.98				05/11/10	71.35	69.79	
5,548.33				09/29/10	74.00	72.44	
5,551.01				12/21/10	71.32	69.76	

Water Elevation (WL)	Land Surface (LSD) 5,620.77	Measuring Point Elevation (MP) 5,622.33	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well 123.6
5,547.00				02/28/11	75.33	73.77	
5,557.54				06/21/11	64.79	63.23	
5,551.14				09/20/11	71.19	69.63	
5,550.32				12/21/11	72.01	70.45	
5,551.22				03/27/12	71.11	69.55	
5,551.29				06/28/12	71.04	69.48	
5,550.29				09/27/12	72.04	70.48	
5,549.31				12/28/12	73.02	71.46	
5,552.30				03/28/13	70.03	68.47	
5,550.18				06/27/13	72.15	70.59	
5,552.55				09/27/13	69.78	68.22	

					Total or		
		Measuring			Measured	Total	37
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
Z	5,620.77	5,618.58	1.02				111.04
5,537.23				11/08/99	81.35	80.33	
5,537.38				11/09/99	81.20	80.18	
5,537.48				01/02/00	81.10	80.08	
5,537.48				01/10/00	81.10	80.08	
5,537.23				01/17/00	81.35	80.33	
5,537.28				01/24/00	81.30	80.28	
5,537.28				02/01/00	81.30	80.28	
5,537.18				02/07/00	81.40	80.38	
5,537.48				02/14/00	81.10	80.08	
5,537.48				02/23/00	81.10	80.08	
5,537.58				03/01/00	81.00	79.98	
5,537.68				03/08/00	80.90	79.88	
5,537.98				03/15/00	80.60	79.58	
5,537.68				03/20/00	80.90	79.88	
5,537.68				03/29/00	80.90	79.88	
5,537.43				04/04/00	81.15	80.13	
5,537.18				04/13/00	81.40	80.38	
5,537.48				04/21/00	81.10	80.08	
5,537.68				04/28/00	80.90	79.88	
5,537.58				05/01/00	81.00	79.98	
5,537.88				05/11/00	80.70	79.68	
5,537.58				05/15/00	81.00	79.98	
5,537.88				05/25/00	80.70	79.68	
5,537.88				06/09/00	80.70	79.68	
5,537.90				06/16/00	80.68	79.66	
5,537.88				06/26/00	80.70	79.68	
5,538.10				07/06/00	80.48	79.46	
5,538.04				07/13/00	80.54	79.52	
5,538.16				07/18/00	80.42	79.40	
5,538.42				07/27/00	80.16	79.14	
5,538.56				08/02/00	80.02	79.00	
5,538.68				08/09/00	79.90	78.88	
5,538.66				08/15/00	79.92	78.90	
5,538.33				08/31/00	80.25	79.23	
5,539.18				09/01/00	79.40	78.38	
5,539.12				09/08/00	79.46	78.44	
5,539.34				09/13/00	79.24	78.22	
5,539.50				09/20/00	79.08	78.06	
5,539.69				10/05/00	78.89	77.87	
5,540.33				11/09/00	78.25	77.23	
5,540.74				12/06/00	77.84	76.82	
5,542.39				01/14/01	76.19	75.17	
5,543.69				02/02/01	74.89	73.87	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
z	5,620.77	5,618.58	1.02				111.04
5,544.96				03/29/01	73.62	72.60	
5,545.45				04/30/01	73.13	72.11	
5,545.89				05/31/01	72.69	71.67	
5,546.19				06/21/01	72.39	71.37	
5,546.50				07/10/01	72.08	71.06	
5,547.18				08/20/01	71.40	70.38	
5,547.59				09/19/01	70.99	69.97	
5,547.84				10/02/01	70.74	69.72	
5,548.12				11/08/01	70.46	69.44	
5,548.65				12/03/01	69.93	68.91	
5,548.87				01/03/02	69.71	68.69	
5,549.37				02/06/02	69.21	68.19	
5,550.00				03/26/02	68.58	67.56	
5,550.22				04/09/02	68.36	67.34	
5,550.81				05/23/02	67.77	66.75	
5,550.79				06/05/02	67.79	66.77	
5,551.08				07/08/02	67.50	66.48	
5,551.54				08/23/02	67.04	66.02	
5,551.79				09/11/02	66.79	65.77	
5,552.19				10/23/02	66.39	65.37	
5,552.27				11/22/02	66.31	65.29	
5,552.48				12/03/02	66.10	65.08	
5,552.74				01/09/03	65.84	64.82	
5,552.92				02/12/03	65.66	64.64	
5,553.40				03/26/03	65.18	64.16	
5,553.48				04/02/03	65.10	64.08	
5,552.32				05/01/03	66.26	65.24	
5,550.53				06/09/03	68.05	67.03	
5,550.09				07/07/03	68.49	67.47	
5,549.64				08/04/03	68.94	67.92	
5,549.31				09/11/03	69.27	68.25	
5,549.58				10/02/03	69.00	67.98	
5,549.50				11/07/03	69.08	68.06	
5,550.07				12/03/03	68.51	67.49	
5,551.86				01/15/04	66.72	65.70	
5,552.57				02/10/04	66.01	64.99	
5,553.63				03/28/04	64.95	63.93	
5,554.04				04/12/04	64.54	63.52	
5,554.60				05/13/04	63.98	62.96	
5,556.28				06/18/04	62.30	61.28	
5,556.61				07/28/04	61.97	60.95	
5,554.21				08/30/04	64.37	63.35	
5,553.49				09/16/04	65.09	64.07	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
Z	5,620.77	5,618.58	1.02				111.04
5,552.53				10/11/04	66.05	65.03	
5,552.42				11/16/04	66.16	65.14	
5,552.46				12/22/04	66.12	65.10	
5,552.07				01/18/05	66.51	65.49	
5,552.21				02/28/05	66.37	65.35	
5,552.26				03/15/05	66.32	65.30	
5,552.30				04/26/05	66.28	65.26	
5,552.25				05/24/05	66.33	65.31	
5,552.22				06/30/05	66.36	65.34	
5,552.15				07/29/05	66.43	65.41	
5,552.47				09/12/05	66.11	65.09	
5,552.50				12/07/05	66.08	65.06	
5,552.96				03/08/06	65.62	64.60	
5,553.23				06/14/06	65.35	64.33	
5,557.20				07/18/06	61.38	60.36	
5,553.32				11/07/06	65.26	64.24	
5,554.35				02/27/07	64.23	63.21	
5,554.07				05/02/07	64.51	63.49	
5,554.07				08/14/07	64.51	63.49	
5,553.88				10/10/07	64.70	63.68	
5,555.73				03/26/08	62.85	61.83	
5,556.60				06/24/08	61.98	60.96	
5,556.83				08/26/08	61.75	60.73	
5,556.87				10/14/08	61.71	60.69	
5,556.90				03/10/09	61.68	60.66	
5,556.91				06/24/09	61.67	60.65	
5,556.61				09/10/09	61.97	60.95	
5,556.78				12/11/09	61.8	60.78	
5,556.75				03/11/10	61.83	60.81	
5,556.19				05/11/10	62.39	61.37	
5,555.26				09/29/10	63.32	62.30	
5,554.66				12/21/10	63.92	62.90	
5,554.74				02/28/11	63.84	62.82	
5,554.57				06/21/11	64.01	62.99	
5,554.13				09/20/11	64.45	63.43	
5,554.54				12/21/11	64.04	63.02	
5,553.64				03/27/12	64.94	63.92	
5,553.66				06/28/12	64.92	63.90	
5,553.73				09/27/12	64.85	63.83	
5,553.59				12/28/12	64.99	63.97	
5,554.73				03/28/13	63.85	62.83	
5,554.44				06/27/13	64.14	63.12	
5,554.37				09/27/13	64.21	63.19	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,623.10	5,624.72	1.62				121.125
5,548.57				11/08/99	76.15	74.53	
5,548.57				11/09/99	76.15	74.53	
5,548.32				01/02/00	76.40	74.78	
5,548.52				01/10/00	76.20	74.58	
5,548.32				01/17/00	76.40	74.78	
5,548.72				01/24/00	76.00	74.38	
5,548.62				02/01/00	76.10	74.48	
5,548.62				02/07/00	76.10	74.48	
5,549.02				02/14/00	75.70	74.08	
5,549.12				02/23/00	75.60	73.98	
5,549.22				03/01/00	75.50	73.88	
5,549.32				03/08/00	75.40	73.78	
5,549.22				03/15/00	75.50	73.88	
5,549.92				03/20/00	74.80	73.18	
5,549.72				03/29/00	75.00	73.38	
5,549.42				04/04/00	75.30	73.68	
5,549.52				04/13/00	75.20	73.58	
5,549.72				04/21/00	75.00	73.38	
5,549.82				04/28/00	74.90	73.28	
5,549.82				05/01/00	74.90	73.28	
5,550.12				05/11/00	74.60	72.98	
5,549.82				05/15/00	74.90	73.28	
5,550.12				05/25/00	74.60	72.98	
5,550.12				06/09/00	74.60	72.98	
5,550.22				06/16/00	74.50	72.88	
5,550.07				06/26/00	74.65	73.03	
5,550.17				07/06/00	74.55	72.93	
5,550.17				07/13/00	74.55	72.93	
5,550.18				07/18/00	74.54	72.92	
5,550.33				07/27/00	74.39	72.77	
5,550.38				08/02/00	74.34	72.72	
5,550.40				08/09/00	74.32	72.70	
5,550.42				08/15/00	74.30	72.68	
5,550.54				08/31/00	74.18	72.56	
5,550.87				09/08/00	73.85	72.23	
5,550.97				09/13/00	73.75	72.13	
5,551.04				09/20/00	73.68	72.06	
5,545.83				10/05/00	78.89	77.27	
5,546.47				11/09/00	78.25	76.63	
5,546.88				12/06/00	77.84	76.22	
5,552.18				01/26/01	72.54	70.92	
5,552.20				02/02/01	72.52	70.90	
5,551.10				03/29/01	73.62	72.00	

Measuring Measured Total Water Land Point Depth to Depth to To	tal
Water Land Point Depth to Depth to To	tal
Loper to Deptit to 1	· tttl
Elevation Surface Elevation Length Of Date Of Water Water Dep	th Of
(z) (LSD) (MP) Riser (L) Monitoring (blw.MP) (blw.LSD) W	ell
5,623.10 5,624.72 1.62 121	.125
5,551.59 04/30/01 73.13 71.51	
5,552.03 05/31/01 72.69 71.07	
5,552.33 06/21/01 72.39 70.77	
5,552.64 07/10/01 72.08 70.46	
5,553.32 08/20/01 71.40 69.78	
5,553.73 09/19/01 70.99 69.37	
5,553.98 10/02/01 70.74 69.12	
5,554.14 11/08/01 70.58 68.96	
5,554.79 12/03/01 69.93 68.31	
5,554.74 01/03/02 69.98 68.36	
5,554.91 02/06/02 69.81 68.19	
5,555.15 03/26/02 69.57 67.95	
5,555.39 04/09/02 69.33 67.71	
5,555.73 05/23/02 68.99 67.37	
5,555.79 06/05/02 68.93 67.31	
5,555.91 07/08/02 68.81 67.19	
5,556.04 08/23/02 68.68 67.06	
5,556.25 09/11/02 68.47 66.85	
5,556.72 10/23/02 68.00 66.38	
5,556.42 11/22/02 68.30 66.68	
5,557.01 12/03/02 67.71 66.09	
5,557.20 01/09/03 67.52 65.90	
5,557.35 02/12/03 67.37 65.75	
5,557.83 03/26/03 66.89 65.27	
5,557.87 04/02/03 66.85 65.23	
5,553.71 05/01/03 71.01 69.39	
5,548.98 06/09/03 75.74 74.12	
5,548.14 07/07/03 76.58 74.96	
5,547.75 08/04/03 76.97 75.35	
5,547.22 09/11/03 77.50 75.88	
5,547.68 10/02/03 77.04 75.42	
5,547.52 11/07/03 77.20 75.58	
5,548.29 12/03/03 76.43 74.81	
5,554.00 01/15/04 70.72 69.10	
5,555.46 02/10/04 69.26 67.64	
5,556.90 03/28/04 67.82 66.20	
5,557.49 04/12/04 67.23 65.61	
5,558.07 05/13/04 66.65 65.03	
5,558.19 06/18/04 66.53 64.91	
5,559.00 07/28/04 65.72 64.10	
5,554.26 08/30/04 70.46 68.84	
5,551.97 09/16/04 72.75 71.13	
5,549.65 10/11/04 75.07 73.45	

		** 1111	c ivicsa ivii	n - wen i v			
					Total or		
		Measuring			Measured	Total	
Water	Land	Point	510 USD 53400 HDD	0.000 0.000 0.000	Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,623.10	5,624.72	1.62				121.125
5,549.89				11/16/04	74.83	73.21	
5,550.37				12/22/04	74.35	72.73	
5,549.95				01/18/05	74.77	73.15	
5,550.09				02/28/05	74.63	73.01	
5,550.13				03/15/05	74.59	72.97	
5,550.18				04/26/05	74.54	72.92	
5,550.32				05/24/05	74.40	72.78	
5,550.21				06/30/05	74.51	72.89	
5,550.11				07/29/05	74.61	72.99	
5,550.33				09/12/05	74.39	72.77	
5,550.29				12/07/05	74.43	72.81	
5,551.30				03/08/06	73.42	71.80	
5,551.42				06/14/06	73.3	71.68	
5,550.52				07/18/06	74.20	72.58	
5550.52				11/07/06	74.20	72.58	
5552.89				02/27/07	71.83	70.21	
5,552.06				05/02/07	72.66	71.04	
5,552.02				08/14/07	72.7	71.08	
5,552.20				10/10/07	72.52	70.90	
5,554.58				03/26/08	70.14	68.52	
5,555.23				06/24/08	69.49	67.87	
5,555.29				08/26/08	69.43	67.81	
5,555.43				10/14/08	69.29	67.67	
5,555.73				03/10/09	68.99	67.37	
5,556.25				06/24/09	68.47	66.85	
5,555.94				09/10/09	68.78	67.16	
5,556.53				12/11/09	68.19	66.57	
5,557.87				03/11/10	66.85	65.23	
5,557.63				05/11/10	67.09	65.47	
5,557.24				09/29/10	67.48	65.86	
5,557.00				12/21/10	67.72	66.10	
5,557.61				02/28/11	67.11	65.49	
5,557.58				06/21/11	67.14	65.52	
5,557.46				09/20/11	67.26	65.64	
5,557.84				12/21/11	66.88	65.26	
5,557.86				03/27/12	66.86	65.24	
5,557.87				06/28/12	66.85	65.23	
5,557.46				09/27/12	67.26	65.64	
5,557.82				12/28/12	66.9	65.28	
5,559.39				03/28/13	65.33	63.71	
5,559.21				06/27/13	65.51	63.89	
5,559.26				09/27/13	65.46	63.84	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Total Depth Of Well
	5,631.21	5,632.23	1.02				141
5,565.78				11/29/99	66.45	65.43	
5,566.93				01/02/00	65.30	64.28	
5,567.03				01/10/00	65.20	64.18	
5,566.83				01/17/00	65.40	64.38	
5,567.13				01/24/00	65.10	64.08	
5,567.33				02/01/00	64.90	63.88	
5,567.13				02/07/00	65.10	64.08	
5,567.43				02/14/00	64.80	63.78	
5,567.63				02/23/00	64.60	63.58	
5,567.73				03/01/00	64.50	63.48	
5,567.83				03/08/00	64.40	63.38	
5,567.70				03/15/00	64.53	63.51	
5,568.03				03/20/00	64.20	63.18	
5,567.93				03/29/00	64.30	63.28	
5,567.63				04/04/00	64.60	63.58	
5,567.83				04/13/00	64.40	63.38	
5,568.03				04/21/00	64.20	63.18	
5,568.23				04/28/00	64.00	62.98	
5,568.13				05/01/00	64.10	63.08	
5,568.53				05/11/00	63.70	62.68	
5,568.23				05/15/00	64.00	62.98	
5,568.53				05/25/00	63.70	62.68	
5,568.61				06/09/00	63.62	62.60	
5,568.69				06/16/00	63.54	62.52	
5,568.45				06/26/00	63.78	62.76	
5,568.61				07/06/00	63.62	62.60	
5,568.61				07/06/00	63.62	62.60	
5,568.49				07/13/00	63.74	62.72	
5,568.55				07/18/00	63.68	62.66	
5,568.65				07/27/00	63.58	62.56	
5,568.73				08/02/00	63.50	62.48	
5,568.77				08/09/00	63.46	62.44	
5,568.76				08/16/00	63.47	62.45	
5,568.95				08/31/00	63.28	62.26	
5,568.49				09/08/00	63.74	62.72	
5,568.67				09/13/00	63.56	62.54	
5,568.96				09/20/00	63.27	62.25	
5,568.93				10/05/00	63.3	62.28	
5,569.34				11/09/00	62.89	61.87	
5,568.79				12/06/00	63.44	62.42	
5,569.11				01/03/01	63.12	62.10	
5,569.75				02/09/01	62.48	61.46	
5,570.34				03/28/01	61.89	60.87	
5,510.54				03120101	01.09	00.07	

			white Me	sa Miii - we	II 1 W 4-3		
Water Elevation (z)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,631.21	5,632.23	1.02				141
5,570.61				04/30/01	61.62	60.60	
5,570.70				05/31/01	61.53	60.51	
5,570.88				06/21/01	61.35	60.33	
5,571.02				07/10/01	61.21	60.19	
5,571.70				08/20/01	60.53	59.51	
5,572.12				09/19/01	60.11	59.09	
5,572.08				10/02/01	60.15	59.13	
5,572.78				11/08/01	59.45	58.43	
5,573.27				12/03/01	58.96	57.94	
5,573.47				01/03/02	58.76	57.74	
5,573.93				02/06/02	58.30	57.28	
5,574.75				03/26/02	57.48	56.46	
5,574.26				04/09/02	57.97	56.95	
5,575.39				05/23/02	56.84	55.82	
5,574.84				06/05/02	57.39	56.37	
5,575.33				07/08/02	56.90	55.88	
5,575.79				08/23/02	56.44	55.42	
5,576.08				09/11/02	56.15	55.13	
5,576.30				10/23/02	55.93	54.91	
5,576.35				11/22/02	55.88	54.86	
5,576.54				12/03/02	55.69	54.67	
5,576.96				01/09/03	55.27	54.25	
5,577.11				02/12/03	55.12	54.10	
5,577.61				03/26/03	54.62	53.60	
5,572.80				04/02/03	59.43	58.41	
5,577.89				05/01/03	54.34	53.32	
5,577.91				06/09/03	54.32	53.30	
5,577.53				07/07/03	54.70	53.68	
5,577.50				08/04/03	54.73	53.71	
5,577.71				09/11/03	54.52	53.50	
5,577.31				10/02/03	54.92	53.90	
5,577.33				11/07/03	54.90	53.88	
5,577.34				12/03/03	54.89	53.87	
5,578.24				01/15/04	53.99	52.97	
5,578.38				02/10/04	53.85	52.83	
5,578.69				03/28/04	53.54	52.52	
5,579.15				04/12/04	53.08	52.06	
5,579.47				05/13/04	52.76	51.74	
5,579.53				06/18/04	52.70	51.68	
5,580.17				07/28/04	52.06	51.04	
5,580.20				08/30/04	52.03	51.01	
5,580.26				09/16/04	51.97	50.95	
5,580.12				10/11/04	52.11	51.09	

			white Me	esa iviiii - vve	II 1 W4-3		
					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Total Depth Of Well
	5,631.21	5,632.23	1.02	P			141
5,579.93		-,		11/16/04	52.30	51.28	
5,580.07				12/22/04	52.16	51.14	
5,579.80				01/18/05	52.43	51.41	
5,580.35				02/28/05	51.88	50.86	
5,580.57				03/15/05	51.66	50.64	
5,580.86				04/26/05	51.37	50.35	
5,581.20				05/24/05	51.03	50.01	
5,581.51				06/30/05	50.72	49.70	
5,581.55				07/29/05	50.68	49.66	
5,581.68				09/12/05	50.55	49.53	
5,581.83				12/07/05	50.4	49.38	
5,564.92				03/08/06	67.31	66.29	
5,582.73				06/13/06	49.50	48.48	
5,582.33				07/18/06	49.90	48.88	
5,582.75				11/07/06	49.48	48.46	
5583.35				02/27/07	48.88	47.86	
5,559.57				05/02/07	72.66	71.64	
5,583.29				08/14/07	48.94	47.92	
5,583.49				10/10/07	48.74	47.72	
5,584.95				03/26/08	47.28	46.26	
5,584.59				06/24/08	47.64	46.62	
5,584.55				08/26/08	47.68	46.66	
5,584.03				10/14/08	48.2	47.18	
5,583.64				03/03/09	48.59	47.57	
5,587.34				06/24/09	44.89	43.87	
5,582.90				09/10/09	49.33	48.31	
5,583.27				12/11/09	48.96	47.94	
5,583.63				03/11/10	48.6	47.58	
5,583.82				05/11/10	48.41	47.39	
5,583.51				09/29/10	48.72	47.70	
5,582.86				12/21/10	49.37	48.35	
5,582.60				02/28/11	49.63	48.61	
5,590.00				06/21/11	42.23	41.21	
5,582.70				09/20/11	49.53	48.51	
5,583.05				12/21/11	49.18	48.16	
5,581.93				03/27/12	50.30	49.28	
5,582.03				06/28/12	50.20	49.18	
5,582.08				09/27/12	50.15	49.13	
5,581.94				12/28/12	50.29	49.27	
5,581.52				03/28/13	50.71	49.69	
5,580.88				06/27/13	51.35	50.33	
10 m							

		wnite	e Mesa Mil	ıı - weii 1 v			
					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,612.301	5,613.485	1.184				114.5
5,512.145				05/25/00	101.34	100.16	
5,518.985				06/09/00	94.50	93.32	
5,512.145				06/16/00	101.34	100.16	
5,517.465				06/26/00	96.02	94.84	
5,520.145				07/06/00	93.34	92.16	
5,521.435				07/13/00	92.05	90.87	
5,522.005				07/18/00	91.48	90.30	
5,522.945				07/27/00	90.54	89.36	
5,523.485				08/02/00	90.00	88.82	
5,523.845				08/09/00	89.64	88.46	
5,523.885				08/15/00	89.60	88.42	
5,524.555				09/01/00	88.93	87.75	
5,513.235				09/08/00	100.25	99.07	
5,516.665				09/13/00	96.82	95.64	
5,519.085				09/20/00	94.40	93.22	
5,522.165				10/05/00	91.32	90.14	
5,524.665				11/09/00	88.82	87.64	
5,518.545				12/06/00	94.94	93.76	
5,527.695				01/03/01	85.79	84.61	
5,529.085				02/09/01	84.40	83.22	
5,529.535				03/27/01	83.95	82.77	
5,530.235				04/30/01	83.25	82.07	
5,530.265				05/31/01	83.22	82.04	
5,534.405				06/22/01	79.08	77.90	
5,533.145				07/10/01	80.34	79.16	
5,534.035				08/20/01	79.45	78.27	
5,534.465				09/19/01	79.02	77.84	
5,533.285				10/02/01	80.20	79.02	
5,533.865				11/08/01	79.62	78.44	
5,534.275				12/03/01	79.21	78.03	
5,534.715				01/03/02	78.77	77.59	
5,535.435				02/06/02	78.05	76.87	
5,536.445				03/26/02	77.04	75.86	
5,536.405				04/09/02	77.08	75.90	
5,537.335				05/23/02	76.15	74.97	
5,537.325				06/05/02	76.16	74.98	
5,537.975				07/08/02	75.51	74.33	
5,538.825				08/23/02	74.66	73.48	
5,539.275				09/11/02	74.21	73.03	
5,539.765				10/23/02	73.72	72.54	
5,540.205				11/22/02	73.28	72.10	
5,540.295				12/03/02	73.19	72.01	
5,540.795				01/09/03	72.69	71.51	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,612.301	5,613.485	1.184				114.5
5,540.985				02/12/03	72.50	71.32	
5,541.675				03/26/03	71.81	70.63	
5,541.765				04/02/03	71.72	70.54	
5,541.885				05/01/03	71.60	70.42	
5,542.025				06/09/03	71.46	70.28	
5,541.925				07/07/03	71.56	70.38	
5,541.885				08/04/03	71.60	70.42	
5,541.825				09/11/03	71.66	70.48	
5,541.885				10/02/03	71.60	70.42	
5,541.995				11/07/03	71.49	70.31	
5,542.005				12/03/03	71.48	70.30	
5,542.555				01/15/04	70.93	69.75	
5,542.705				02/10/04	70.78	69.60	
5,543.225				03/28/04	70.26	69.08	
5,543.555				04/12/04	69.93	68.75	
5,543.865				05/13/04	69.62	68.44	
5,543.915				06/18/04	69.57	68.39	
5,544.655				07/28/04	68.83	67.65	
5,544.795				08/30/04	68.69	67.51	
5,544.845				09/16/04	68.64	67.46	
5,544.705				10/11/04	68.78	67.60	
5,544.525				11/16/04	68.96	67.78	
5,544.625				12/22/04	68.86	67.68	
5,544.305				01/18/05	69.18	68.00	
5,544.585				02/28/05	68.90	67.72	
5,544.685				03/15/05	68.80	67.62	
5,544.675				04/26/05	68.81	67.63	
5,544.785				05/24/05	68.70	67.52	
5,544.795				06/30/05	68.69	67.51	
5,544.775				07/29/05	68.71	67.53	
5,545.005				09/12/05	68.48	67.30	
5,545.225				12/07/05	68.26	67.08	
5,545.735				03/08/06	67.75	66.57	
5,545.785				06/14/06	67.70	66.52	
5,545.855				07/18/06	67.63	66.45	
5,545.805				11/07/06	67.68	66.50	
5546.675				02/27/07	66.81	65.63	
5,546.535				05/02/07	66.95	65.77	
5,547.155				08/15/07	66.33	65.15	
5,547.215				10/10/07	66.27	65.09	
5,548.305				03/26/08	65.18	64.00	
5,548.865				06/24/08	64.62	63.44	
5,549.235				08/26/08	64.25	63.07	
-,,							

		Measuring			Total or Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,612.301	5,613.485	1.184				114.5
5,549.305				10/14/08	64.18	63.00	
5,549.725				03/03/09	63.76	62.58	
5,549.905				06/24/09	63.58	62.40	
5,549.695				09/10/09	63.79	62.61	
5,549.865				12/11/09	63.62	62.44	
5,545.60				03/11/10	67.89	66.71	
5,530.88				05/11/10	82.61	81.43	
5,545.24				09/29/10	68.25	67.07	
5,533.66				12/21/10	79.83	78.65	
5,544.44				02/28/11	69.05	67.87	
5,543.73				06/21/11	69.76	68.58	
5,540.48				09/20/11	73.01	71.83	
5,544.36				12/21/11	69.13	67.95	
5,543.48				03/27/12	70.01	68.83	
5,543.49				06/28/12	70.00	68.82	
5,543.36				09/27/12	70.13	68.95	
5,543.51				12/28/12	69.98	68.80	
5,543.49				03/28/13	70.00	68.82	
5,543.36				06/27/13	70.13	68.95	
5,544.59				09/27/13	68.90	67.72	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,638.75	5,640.70	1.95				121.75
5,579.30				01/02/00	61.40	59.45	
5,579.60				01/10/00	61.10	59.15	
5,579.35				01/17/00	61.35	59.40	
5,579.60				01/24/00	61.10	59.15	
5,579.50				02/01/00	61.20	59.25	
5,579.50				02/07/00	61.20	59.25	
5,579.90				02/14/00	60.80	58.85	
5,579.90				02/23/00	60.80	58.85	
5,580.20				03/01/00	60.50	58.55	
5,580.00				03/08/00	60.70	58.75	
5,580.04				03/15/00	60.66	58.71	
5,580.70				03/20/00	60.00	58.05	
5,580.30				03/29/00	60.40	58.45	
5,580.00				04/04/00	60.70	58.75	
5,580.20				04/13/00	60.50	58.55	
5,580.40				04/21/00	60.30	58.35	
5,580.50				04/28/00	60.20	58.25	
5,580.50				05/01/00	60.20	58.25	
5,580.90				05/11/00	59.80	57.85	
5,580.50				05/15/00	60.20	58.25	
5,580.75				05/25/00	59.95	58.00	
5,580.80				06/09/00	59.90	57.95	
5,580.92				06/16/00	59.78	57.83	
5,580.80				06/26/00	59.90	57.95	
5,580.90				07/06/00	59.80	57.85	
5,581.05				07/13/00	59.65	57.70	
5,580.90				07/18/00	59.80	57.85	
5,581.05				07/27/00	59.65	57.70	
5,581.06				08/02/00	59.64	57.69	
5,581.08				08/09/00	59.62	57.67	
5,581.07				08/16/00	59.63	57.68	
5,581.25				08/31/00	59.45	57.50	
5,581.32				09/08/00	59.38	57.43	
5,581.34				09/13/00	59.36	57.41	
5,581.41				09/20/00	59.29	57.34	
5,581.37				10/05/00	59.33	57.38	
5,581.66				11/09/00	59.04	57.09	
5,581.63				12/06/00	59.07	57.12	
5,581.92				01/03/01	58.78	56.83	
5,582.20				02/09/01	58.50	56.55	
5,582.54				03/28/01	58.16	56.21	
5,582.72				04/30/01	57.98	56.03	
5,582.72				05/31/01	57.98	56.03	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,638.75	5,640.70	1.95				121.75
5,582.81				06/22/01	57.89	55.94	
5,582.92				07/10/01	57.78	55.83	
5,583.17				08/20/01	57.53	55.58	
5,583.28				09/19/01	57.42	55.47	
5,583.36				10/02/01	57.34	55.39	
5,583.49				11/08/01	57.21	55.26	
5,583.84				12/03/01	56.86	54.91	
5,583.79				01/03/02	56.91	54.96	
5,583.96				02/06/02	56.74	54.79	
5,584.39				03/26/02	56.31	54.36	
5,584.12				04/09/02	56.58	54.63	
5,584.55				05/23/02	56.15	54.20	
5,584.42				06/05/02	56.28	54.33	
5,583.65				07/08/02	57.05	55.10	
5,584.90				08/23/02	55.80	53.85	
5,585.02				09/11/02	55.68	53.73	
5,585.20				10/23/02	55.50	53.55	
5,585.15				11/22/02	55.55	53.60	
5,585.42				12/03/02	55.28	53.33	
5,585.65				01/09/03	55.05	53.10	
5,585.65				02/12/03	55.05	53.10	
5,585.92				03/26/03	54.78	52.83	
5,586.22				04/02/03	54.48	52.53	
5,586.01				05/01/03	54.69	52.74	
5,584.81				06/09/03	55.89	53.94	
5,584.34				07/07/03	56.36	54.41	
5,584.40				08/04/03	56.30	54.35	
5,583.88				09/11/03	56.82	54.87	
5,583.57				10/02/03	57.13	55.18	
5,583.39				11/07/03	57.31	55.36	
5,583.97				12/03/03	56.73	54.78	
5,585.28				01/15/04	55.42	53.47	
5,585.50				02/10/04	55.20	53.25	
5,585.87				03/28/04	54.83	52.88	
5,586.20				04/12/04	54.50	52.55	
5,586.45				05/13/04	54.25	52.30	
5,586.50				06/18/04	54.20	52.25	
5,587.13				07/28/04	53.57	51.62	
5,586.22				08/30/04	54.48	52.53	
5,585.69				09/16/04	55.01	53.06	
5,585.17				10/11/04	55.53	53.58	
5,584.64				11/16/04	56.06	54.11	
5,584.77				12/22/04	55.93	53.98	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,638.75	5,640.70	1.95				121.75
5,584.65				01/18/05	56.05	54.10	
5,584.98				02/28/05	55.72	53.77	
5,585.15				03/15/05	55.55	53.60	
5,586.25				04/26/05	54.45	52.50	
5,586.79				05/24/05	53.91	51.96	
5,586.52				06/30/05	54.18	52.23	
5,586.03				07/29/05	54.67	52.72	
5,586.05				09/12/05	54.65	52.70	
5,585.80				12/07/05	54.90	52.95	
5,587.06				03/08/06	53.64	51.69	
5,585.90				06/13/06	54.80	52.85	
5,585.32				07/18/06	55.38	53.43	
5,585.35				11/07/06	55.35	53.40	
5585.81				02/27/07	54.89	52.94	
5,585.20				05/02/07	55.50	53.55	
5,586.66				08/14/07	54.04	52.09	
5,586.80				10/10/07	53.90	51.95	
5,588.48				03/26/08	52.22	50.27	
5,586.51				06/24/08	54.19	52.24	
5,586.45				08/26/08	54.25	52.30	
5,585.40				10/14/08	55.3	53.35	
5,584.80				03/03/09	55.9	53.95	
5,584.73				06/24/09	55.97	54.02	
5,584.36				09/10/09	56.34	54.39	
5,585.02				12/11/09	55.68	53.73	
5,585.66				03/11/10	55.04	53.09	
5,584.86				05/11/10	55.84	53.89	
5,584.55				09/29/10	56.15	54.20	
5,584.17				12/21/10	56.53	54.58	
5,583.55				02/28/11	57.15	55.20	
5,584.72				06/21/11	55.98	54.03	
5,584.62				09/20/11	56.08	54.13	
5,585.04				11/21/11	55.66	53.71	
5,583.89				03/27/12	56.81	54.86	
5,583.92				06/28/12	56.78	54.83	
5,583.89				09/27/12	56.81	54.86	
5,583.89				12/28/12	56.81	54.86	

					Total or		
		Measuring			Measured	Total	Total
Water	Land	Point			Depth to	Depth to	Depth Of
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Well
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
	5,607.33	5,608.78	1.450				98.55
5,522.28				05/25/00	86.50	85.05	
5,521.51				06/09/00	87.27	85.82	
5,522.35				06/16/00	86.43	84.98	
5,522.14				06/26/00	86.64	85.19	
5,522.25				07/06/00	86.53	85.08	
5,522.13				07/13/00	86.65	85.20	
5,522.17				07/18/00	86.61	85.16	
5,522.26				07/25/00	86.52	85.07	
5,522.31				08/02/00	86.47	85.02	
5,522.33				08/09/00	86.45	85.00	
5,522.35				08/15/00	86.43	84.98	
5,522.40				08/31/00	86.38	84.93	
5,522.40				09/08/00	86.38	84.93	
5,522.45				09/13/00	86.33	84.88	
5,522.53				09/20/00	86.25	84.80	
5,522.39				10/05/00	86.39	84.94	
5,522.42				11/09/00	86.36	84.91	
5,522.29				12/06/00	86.49	85.04	
5,522.63				01/03/01	86.15	84.70	
5,522.72				02/09/01	86.06	84.61	
5,522.90				03/26/01	85.88	84.43	
5,522.70				04/30/01	86.08	84.63	
5,522.89				05/31/01	85.89	84.44	
5,522.88				06/20/01	85.90	84.45	
5,522.96				07/10/01	85.82	84.37	
5,523.10				08/20/01	85.68	84.23	
5,523.23				09/19/01	85.55	84.10	
5,523.21				10/02/01	85.57	84.12	
5,523.25				11/08/01	85.53	84.08	
5,523.46				12/03/01	85.32	83.87	
5,523.36				01/03/02	85.42	83.97	
5,523.50				02/06/02	85.28	83.83	
5,523.94				03/26/02	84.84	83.39	
5,523.75				04/09/02	85.03	83.58	
5,524.23				05/23/02	84.55	83.10	
5,523.98				06/05/02	84.80	83.35	
5,524.31				07/08/02	84.47	83.02	
5,524.36				08/23/02	84.42	82.97	
5,524.49				09/11/02	84.29	82.84	
5,524.71				10/23/02	84.07	82.62	
5,524.60				11/22/02	84.18	82.73	
5,524.94				12/03/02	83.84	82.39	
5,525.10				01/09/03	83.68	82.23	
- 600 1000000 10							

					Total or		
		Measuring			Measured	Total	Total
Water	Land	Point			Depth to	Depth to	Depth Of
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Well
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
	5,607.33	5,608.78	1.450				98.55
5,525.15				02/12/03	83.63	82.18	
5,525.35				03/26/03	83.43	81.98	
5,525.68				04/02/03	83.10	81.65	
5,525.74				05/01/03	83.04	81.59	
5,525.98				06/09/03	82.80	81.35	
5,526.04				07/07/03	82.74	81.29	
5,526.07				08/04/03	82.71	81.26	
5,526.42				09/11/03	82.36	80.91	
5,526.30				10/02/03	82.48	81.03	
5,526.41				11/07/03	82.37	80.92	
5,526.46				12/03/03	82.32	80.87	
5,526.83				01/15/04	81.95	80.50	
5,526.81				02/10/04	81.97	80.52	
5,527.14				03/28/04	81.64	80.19	
5,527.39				04/12/04	81.39	79.94	
5,527.64				05/13/04	81.14	79.69	
5,527.70				06/18/04	81.08	79.63	
5,528.16				07/28/04	80.62	79.17	
5,528.30				08/30/04	80.48	79.03	
5,528.52				09/16/04	80.26	78.81	
5,528.71				10/11/04	80.07	78.62	
5,528.74				11/16/04	80.04	78.59	
5,529.20				12/22/04	79.58	78.13	
5,528.92				01/18/05	79.86	78.41	
5,529.51				02/28/05	79.27	77.82	
5,529.74				03/15/05	79.04	77.59	
5,529.96				04/26/05	78.82	77.37	
5,530.15				05/24/05	78.63	77.18	
5,530.35				06/30/05	78.43	76.98	
5,530.47				07/29/05	78.31	76.86	
5,530.95				09/12/05	77.83	76.38	
5,531.50				12/07/05	77.28	75.83	
5,532.43				03/08/06	76.35	74.90	
5,533.49				06/13/06	75.29	73.84	
5,532.58				07/18/06	76.20	74.75	
5,532.88				11/07/06	75.90	74.45	
5534.09				02/27/07	74.69	73.24	
5,534.04				05/02/07	74.74	73.29	
5,534.43				08/14/07	74.35	72.90	
5,554.54				10/10/07	54.24	52.79	
5,535.40				03/26/08	73.38	71.93	
5,535.55				06/24/08	73.23	71.78	
5,535.90				08/26/08	72.88	71.43	

		Measuring			Total or Measured	Total	Total
Water	Land	Point			Depth to	Depth to	Depth Of
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Well
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
	5,607.33	5,608.78	1.450				98.55
5,535.87				10/14/08	72.91	71.46	
5,536.42				03/10/09	72.36	70.91	
5,536.71				06/24/09	72.07	70.62	
5,536.83				09/10/09	71.95	70.50	
5,537.35				12/11/09	71.43	69.98	
5,537.93				03/11/10	70.85	69.40	
5,538.14				05/11/10	70.64	69.19	
5,538.03				09/29/10	70.75	69.30	
5,538.04				12/21/10	70.74	69.29	
5,537.98				02/28/11	70.8	69.35	
5,538.46				06/21/11	70.32	68.87	
5,538.37				09/20/11	70.41	68.96	
5,538.87				12/21/11	69.91	68.46	
5,538.73				03/27/12	70.05	68.60	
5,538.80				06/28/12	69.98	68.53	
5,539.04				09/27/12	69.74	68.29	
5,538.74				12/28/12	70.04	68.59	
5,539.53				03/28/13	69.25	67.80	
5,539.46				06/27/13	69.32	67.87	
5,539.62				09/27/13	69.16	67.71	

Water Elevation (WL) Land (LSD) Point Elevation (MP) Length Of Riser (L) Date Of Date Of (blw.MP) Water (blw.MP) Water (blw.LSD) Total Depth to (blw.LSD) 5,552.37 5,619.87 5,621.07 1.20 11/29/99 68.70 67.50 66.30 5,553.57 01/02/00 67.50 66.30 66.30 66.00 5,553.87 01/11/00 67.20 66.00 66.15 5,553.87 01/24/00 67.10 65.90 5,553.87 02/01/00 67.20 66.00 5,553.87 02/07/00 67.20 66.00 5,554.17 02/14/00 66.90 65.70 5,554.27 02/23/00 66.80 65.60 5,554.37 03/01/00 66.70 65.50 5,554.27 03/08/00 66.70 65.50 5,554.27 03/15/00 66.80 65.60 5,554.27 03/15/00 66.80 65.60 5,554.27 03/20/00 66.80 65.60			Measuring			Total or Measured	Total	
Elevation (WL) Surface (LSD) Elevation (MP) Length Of Riser (L) Date Of Monitoring (blw.MP) Water (blw.LSD) Water (blw.LSD) <t< th=""><th>Water</th><th>Lond</th><th>_</th><th></th><th></th><th></th><th></th><th>Total Donth</th></t<>	Water	Lond	_					Total Donth
(WL) (LSD) (MP) Riser (L) Monitoring (blw.MP) (blw.LSD) (blw.LSD) 5,619.87 5,619.87 1.20 119.8 5,552.37 11/29/99 68.70 67.50 5,553.57 01/02/00 67.50 66.30 5,553.87 01/10/00 67.20 66.00 5,553.97 01/24/00 67.10 65.90 5,553.87 02/01/00 67.20 66.00 5,553.87 02/07/00 67.20 66.00 5,553.87 02/07/00 67.20 66.00 5,554.17 02/14/00 66.90 65.70 5,554.27 02/23/00 66.80 65.60 5,554.37 03/08/00 66.70 65.50 5,554.27 03/15/00 66.80 65.60 5,554.27 03/15/00 66.80 65.60 5,554.27 03/20/00 66.30 65.10				I amosth Of	Data Of		-	1. T.
5,619.87 5,621.07 1.20 119.8 5,552.37 11/29/99 68.70 67.50 5,553.57 01/02/00 67.50 66.30 5,553.87 01/10/00 67.20 66.00 5,553.72 01/17/00 67.35 66.15 5,553.87 01/24/00 67.10 65.90 5,553.87 02/01/00 67.20 66.00 5,554.17 02/14/00 66.90 65.70 5,554.27 02/23/00 66.80 65.60 5,554.37 03/01/00 66.70 65.50 5,554.27 03/08/00 66.70 65.50 5,554.27 03/15/00 66.80 65.60 5,554.27 03/15/00 66.80 65.60 5,554.27 03/15/00 66.80 65.60 5,554.77 03/20/00 66.30 65.10				-				
5,552.37 11/29/99 68.70 67.50 5,553.57 01/02/00 67.50 66.30 5,553.87 01/10/00 67.20 66.00 5,553.72 01/17/00 67.35 66.15 5,553.87 01/24/00 67.10 65.90 5,553.87 02/01/00 67.20 66.00 5,554.17 02/14/00 66.90 65.70 5,554.27 02/23/00 66.80 65.60 5,554.37 03/01/00 66.70 65.50 5,554.27 03/08/00 66.70 65.50 5,554.27 03/15/00 66.80 65.60 5,554.27 03/15/00 66.80 65.60 5,554.77 03/20/00 66.30 65.10	(WL)				Monitoring	(DIW.WIF)	(DIW.LSD)	
5,553.57 01/02/00 67.50 66.30 5,553.87 01/10/00 67.20 66.00 5,553.72 01/17/00 67.35 66.15 5,553.97 01/24/00 67.10 65.90 5,553.87 02/01/00 67.20 66.00 5,553.87 02/07/00 67.20 66.00 5,554.17 02/14/00 66.90 65.70 5,554.27 02/23/00 66.80 65.60 5,554.37 03/01/00 66.70 65.50 5,554.27 03/15/00 66.80 65.60 5,554.77 03/20/00 66.30 65.10	F 550 07	5,619.87	5,621.07	1.20	11/20/00	60.70	67.50	119.8
5,553.87 01/10/00 67.20 66.00 5,553.72 01/17/00 67.35 66.15 5,553.97 01/24/00 67.10 65.90 5,553.87 02/01/00 67.20 66.00 5,553.87 02/07/00 67.20 66.00 5,554.17 02/14/00 66.90 65.70 5,554.27 02/23/00 66.80 65.60 5,554.37 03/01/00 66.70 65.50 5,554.27 03/08/00 66.70 65.50 5,554.27 03/15/00 66.80 65.60 5,554.77 03/20/00 66.30 65.10								
5,553.72 01/17/00 67.35 66.15 5,553.97 01/24/00 67.10 65.90 5,553.87 02/01/00 67.20 66.00 5,553.87 02/07/00 67.20 66.00 5,554.17 02/14/00 66.90 65.70 5,554.27 02/23/00 66.80 65.60 5,554.37 03/01/00 66.70 65.50 5,554.27 03/08/00 66.70 65.50 5,554.27 03/15/00 66.80 65.60 5,554.77 03/20/00 66.30 65.10								
5,553.97 01/24/00 67.10 65.90 5,553.87 02/01/00 67.20 66.00 5,554.17 02/14/00 66.90 65.70 5,554.27 02/23/00 66.80 65.60 5,554.37 03/01/00 66.70 65.50 5,554.27 03/08/00 66.70 65.50 5,554.37 03/08/00 66.70 65.50 5,554.27 03/15/00 66.80 65.60 5,554.77 03/20/00 66.30 65.10								
5,553.87 02/01/00 67.20 66.00 5,553.87 02/07/00 67.20 66.00 5,554.17 02/14/00 66.90 65.70 5,554.27 02/23/00 66.80 65.60 5,554.37 03/01/00 66.70 65.50 5,554.27 03/08/00 66.70 65.50 5,554.27 03/15/00 66.80 65.60 5,554.77 03/20/00 66.30 65.10								
5,553.87 02/07/00 67.20 66.00 5,554.17 02/14/00 66.90 65.70 5,554.27 02/23/00 66.80 65.60 5,554.37 03/01/00 66.70 65.50 5,554.37 03/08/00 66.70 65.50 5,554.27 03/15/00 66.80 65.60 5,554.77 03/20/00 66.30 65.10								
5,554.17 02/14/00 66.90 65.70 5,554.27 02/23/00 66.80 65.60 5,554.37 03/01/00 66.70 65.50 5,554.37 03/08/00 66.70 65.50 5,554.27 03/15/00 66.80 65.60 5,554.77 03/20/00 66.30 65.10								
5,554.27 02/23/00 66.80 65.60 5,554.37 03/01/00 66.70 65.50 5,554.37 03/08/00 66.70 65.50 5,554.27 03/15/00 66.80 65.60 5,554.77 03/20/00 66.30 65.10								
5,554.37 03/01/00 66.70 65.50 5,554.37 03/08/00 66.70 65.50 5,554.27 03/15/00 66.80 65.60 5,554.77 03/20/00 66.30 65.10								
5,554.37 03/08/00 66.70 65.50 5,554.27 03/15/00 66.80 65.60 5,554.77 03/20/00 66.30 65.10								
5,554.27 03/15/00 66.80 65.60 5,554.77 03/20/00 66.30 65.10								
5,554.77 03/20/00 66.30 65.10								
5,554.57 03/29/00 66.50 65.30								
5,554.27 04/04/00 66.80 65.60								
5,554.57 04/13/00 66.50 65.30								
5,554.77 04/21/00 66.30 65.10								
5,554.87 04/28/00 66.20 65.00								
5,554.87 05/01/00 66.20 65.00								
5,555.27 05/11/00 65.80 64.60								
5,554.97 05/15/00 66.10 64.90								
5,555.27 05/25/00 65.80 64.60								
5,555.33 06/09/00 65.74 64.54								
5,555.45 06/16/00 65.62 64.42								
5,555.22 06/26/00 65.85 64.65	5,555.22							
5,555.45 07/06/00 65.62 64.42	5,555.45							
5,555.40 07/13/00 65.67 64.47								
5,555.45 07/18/00 65.62 64.42	5,555.45				07/18/00	65.62	64.42	
5,555.59 07/27/00 65.48 64.28	5,555.59				07/27/00	65.48	64.28	
5,555.65 08/02/00 65.42 64.22	5,555.65						64.22	
5,555.70 08/09/00 65.37 64.17	5,555.70				08/09/00	65.37	64.17	
5,555.74 08/16/00 65.33 64.13	5,555.74				08/16/00	65.33	64.13	
5,555.96 08/31/00 65.11 63.91	5,555.96				08/31/00	65.11	63.91	
5,555.87 09/08/00 65.20 64.00	5,555.87				09/08/00	65.20	64.00	
5,555.95 09/13/00 65.12 63.92	5,555.95				09/13/00	65.12	63.92	
5,556.05 09/20/00 65.02 63.82	5,556.05				09/20/00	65.02	63.82	
5,556.06 10/05/00 65.01 63.81	5,556.06				10/05/00	65.01	63.81	
5,556.17 10/12/00 64.90 63.70	5,556.17				10/12/00	64.90	63.70	
5,556.20 10/19/00 64.87 63.67					10/19/00	64.87	63.67	
5,556.22 10/23/00 64.85 63.65	5,556.22				10/23/00	64.85	63.65	
5,556.36 11/09/00 64.71 63.51	5,556.36				11/09/00	64.71	63.51	
5,556.42 11/14/00 64.65 63.45					11/14/00	64.65	63.45	
5,556.45 11/30/00 64.62 63.42	5,556.45				11/30/00	64.62	63.42	

		Measuring			Total or Measured	Total	
Water	Land	Point			Depth to	Depth to	Total Depth
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Of Well
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
	5,619.87	5,621.07	1.20				119.8
5,556.15				12/06/00	64.92	63.72	
5,556.89				01/14/01	64.18	62.98	
5,557.07				02/09/01	64.00	62.80	
5,557.62				03/29/01	63.45	62.25	
5,557.51				04/30/01	63.56	62.36	
5,557.77				05/31/01	63.30	62.10	
5,557.84				06/21/01	63.23	62.03	
5,557.98				07/10/01	63.09	61.89	
5,558.33				08/20/01	62.74	61.54	
5,558.57				09/19/01	62.50	61.30	
5,558.53				10/02/01	62.54	61.34	
5,558.62				11/08/01.	62.45	61.25	
5,559.03				12/03/01	62.04	60.84	
5,559.08				01/03/02	61.99	60.79	
5,559.32				02/06/02	61.75	60.55	
5,559.63				03/26/02	61.44	60.24	
5,559.55				04/09/02	61.52	60.32	
5,560.06				05/23/02	61.01	59.81	
5,559.91				06/05/02	61.16	59.96	
5,560.09				07/08/02	60.98	59.78	
5,560.01				08/23/02	61.06	59.86	
5,560.23				09/11/02	60.84	59.64	
5,560.43				10/23/02	60.64	59.44	
5,560.39				11/22/02	60.68	59.48	
5,560.61				12/03/02	60.46	59.26	
5,560.89				01/09/03	60.18	58.98	
5,560.94				02/12/03	60.13	58.93	
5,561.28				03/26/03	59.79	58.59	
5,561.35				04/02/03	59.72	58.52	
5,546.20				05/01/03	74.87	73.67	
5,539.47				06/09/03	81.60	80.40	
5,541.87				07/07/03	79.20	78.00	
5,542.12				08/04/03	78.95	77.75	
5,541.91				09/11/03	79.16	77.96	
5,544.62				10/02/03	76.45	75.25	
5,542.67				11/07/03	78.40	77.20	
5,549.96				12/03/03	71.11	69.91	
5,557.17				01/15/04	63.90	62.70	
5,558.65				02/10/04	62.42	61.22	
5,559.90				03/28/04	61.17	59.97	
5,560.36				04/12/04	60.71	59.51	
5,560.87				05/13/04	60.20	59.00	
5,560.95				06/18/04	60.12	58.92	

			1100 1/1000 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total Depth
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Of Well
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
		5,621.07	1.20	Montoring	(biw.ivii)	(DIW.LDD)	119.8
E 561 61	5,619.87	3,021.07	1.20	07/28/04	59.43	58.23	119.8
5,561.64				08/30/04	78.07		
5,543.00				09/16/04	79.16	76.87 77.96	
5,541.91					80.99	79.79	
5,540.08				10/11/04 11/16/04	74.15	72.95	
5,546.92					74.13	72.90	
5,546.97				12/22/04	74.10		
5,546.51				01/18/05		73.36	
5,546.66				02/28/05	74.41	73.21	
5,546.81				03/15/05	74.26	73.06	
5,548.19				04/26/05	72.88	71.68	
5,547.11				05/24/05	73.96	72.76	
5,546.98				06/30/05	74.09	72.89	
5,546.92				07/29/05	74.15	72.95	
5,547.26				09/12/05	73.81	72.61	
5,547.26				12/07/05	73.81	72.61	
5,548.86				03/08/06	72.21	71.01	
5,548.62				06/13/06	72.45	71.25	
5,550.04				07/18/06	71.03	69.83	
5,548.32				11/07/06	72.75	71.55	
5,550.44				02/27/07	70.63	69.43	
5,549.69				05/02/07	71.38	70.18	
5,549.97				08/14/07	71.10	69.90	
5,550.30				10/10/07	70.77	69.57	
5,551.92				03/26/08	69.15	67.95	
5,552.94				06/24/08	68.13	66.93	
5,552.34				08/26/08	68.73	67.53	
5,552.61				10/14/08	68.46	67.26	
5,552.81				03/10/09	68.26	67.06	
5,553.11				06/24/09	67.96	66.76	
5,552.55				09/10/09	68.52	67.32	
5,553.06				12/11/09	68.01	66.81	
5,554.64				03/11/10	66.43	65.23	
5,554.20				05/11/10	66.87	65.67	
5,553.45				09/29/10	67.62	66.42	
5,553.40				12/21/10	67.67	66.47	
5,553.93				02/28/11	67.14	65.94	
5,553.67				06/21/11	67.4	66.20	
5,553.46				09/20/11	67.61	66.41	
5,553.78				12/21/11	67.29	66.09	
5,553.17				03/27/12	67.90	66.70	
5,553.21				06/28/12	67.86	66.66	
5,552.90				09/27/12	68.17	66.97	
5,553.15				12/28/12	67.92	66.72	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well (blw.LSD)
	5,619.87	5,621.07	1.20				119.8
5,556.23				03/28/13	64.84	63.64	•
5,556.04				06/27/13	65.03	63.83	
5,556.09				09/27/13	64.98	63.78	

		Magazzina			Total or Measured		
Water	Land	Measuring Point			Depth to	Total Depth	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	to Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
(WL)	5,616.80	5,621.40	4.60	Monitoring	(DIW.WIF)	(DIW.LSD)	126.00
5,546.40	3,010.80	3,021.40	4.00	11/29/99	75.00	70.40	120.00
5,546.20				01/02/00	75.20	70.40	
5,546.50				01/02/00	74.90	70.30	
5,546.30				01/10/00	75.10	70.50	
				01/17/00	74.80	70.30	
5,546.60							
5,546.50				02/01/00	74.90	70.30	
5,546.50				02/07/00	74.90	70.30	
5,546.90				02/14/00	74.50	69.90	
5,546.95				02/23/00	74.45	69.85	
5,547.05				03/01/00	74.35	69.75	
5,547.05				03/08/00	74.35	69.75	
5,547.10				03/15/00	74.30	69.70	
5,547.50				03/20/00	73.90	69.30	
5,547.40				03/29/00	74.00	69.40	
5,547.20				04/04/00	74.20	69.60	
5,547.40				04/13/00	74.00	69.40	
5,547.60				04/21/00	73.80	69.20	
5,547.70				04/28/00	73.70	69.10	
5,547.70				05/01/00	73.70	69.10	
5,548.00				05/11/00	73.40	68.80	
5,547.70				05/15/00	73.70	69.10	
5,547.90				05/25/00	73.50	68.90	
5,547.90				06/09/00	73.50	68.90	
5,548.00				06/16/00	73.40	68.80	
5,547.87				06/26/00	73.53	68.93	
5,547.95				07/06/00	73.45	68.85	
5,547.96				07/13/00	73.44	68.84	
5,547.95				07/18/00	73.45	68.85	
5,548.11				07/27/00	73.29	68.69	
5,548.15				08/02/00	73.25	68.65	
5,548.17				08/09/00	73.23	68.63	
5,548.16				08/15/00	73.24	68.64	
5,548.40				08/31/00	73.00	68.40	
5,548.50				09/08/00	72.90	68.30	
5,548.62				09/13/00	72.78	68.18	
5,548.75				09/20/00	72.65	68.05	
5,548.76				10/05/00	72.64	68.04	
5,549.00				11/09/00	72.40	67.80	
5,548.85				12/06/00	72.55	67.95	
5,549.47				01/03/01	71.93	67.33	
5,549.89				02/09/01	71.51	66.91	
5,550.37				03/27/01	71.03	66.43	
5,550.50				04/30/01	70.90	66.30	
,							

		M			Total or		
Water	Land	Measuring Point			Measured	Total Donath	Takal
Elevation	Surface	Elevation	Longth Of	Date Of	Depth to Water	Total Depth to Water	Total
(WL)	(LSD)	(MP)	Length Of Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Depth Of Well
(WL)	5,616.80	5,621.40	4.60	Monitoring	(DIW.WIF)	(blw.LSD)	126.00
5 550 60	3,010.80	3,021.40	4.00	05/21/01	70.70	((10	120.00
5,550.68				05/31/01	70.72	66.12	
5,550.68				06/20/01	70.72	66.12	
5,551.02				07/10/01 08/20/01	70.38	65.78	
5,551.32 5,551.49					70.08	65.48	
				09/19/01	69.91	65.31	
5,551.64				10/02/01	69.76	65.16	
5,551.81				11/08/01	69.59	64.99	
5,552.22				12/03/01	69.18	64.58	
5,552.16				01/03/02	69.24	64.64	
5,552.38				02/06/02	69.02	64.42	
5,552.85				03/26/02	68.55	63.95	
5,552.83				04/09/02	68.57	63.97	
5,553.20				05/23/02	68.20	63.60	
5,553.16				06/05/02	68.24	63.64	
5,553.32				07/08/02	68.08	63.48	
5,553.49				08/23/02	67.91	63.31	
5,553.69				09/11/02	67.71	63.11	
5,554.09				10/23/02	67.31	62.71	
5,554.02				11/22/02	67.38	62.78	
5,554.23				12/03/02	67.17	62.57	
5,554.43				01/09/03	66.97	62.37	
5,554.42				02/12/03	66.98	62.38	
5,554.71				03/26/03	66.69	62.09	
5,554.83				04/02/03	66.57	61.97	
5,552.21				05/01/03	69.19	64.59	
5,547.93				06/09/03	73.47	68.87	
5,546.97				07/07/03	74.43	69.83	
5,546.58				08/04/03	74.82	70.22	
5,546.24				09/11/03	75.16	70.56	
5,546.38				10/02/03	75.02	70.42	
5,546.40				11/07/03	75.00	70.40	
5,546.59				12/03/03	74.81	70.21	
5,551.29				01/15/04	70.11	65.51	
5,552.69				02/10/04	68.71	64.11	
5,554.06				03/28/04	67.34	62.74	
5,554.52				04/12/04	66.88	62.28	
5,555.06				05/13/04	66.34	61.74	
5,555.11				06/18/04	66.29	61.69	
5,555.88				07/28/04	65.52	60.92	
5,552.97				08/30/04	68.43	63.83	
5,550.65				09/16/04	70.75	66.15	
5,548.40				10/11/04	73.00	68.40	
5,548.28				11/16/04	73.12	68.52	

		VVI	iite Mesa M	IIII - vveii 1	VV 4-8		
Water Elevation	Land Surface	Measuring Point Elevation	Length Of	Date Of	Total or Measured Depth to Water	Total Depth to Water	Total Depth Of
			_			(blw.LSD)	_
(WL)	(LSD) 5,616.80	(MP) 5,621.40	Riser (L) 4.60	Monitoring	(blw.MP)	(blw.LSD)	Well 126.00
F F 40 00	3,010.00	3,021.40	4.00	12/22/04	72.60	68.00	120.00
5,548.80 5,548.43				12/22/04 01/18/05	72.97	68.37	
5,548.61				02/28/05	72.79	68.19	
5,548.64				03/15/05	72.76	68.16	
5,548.65				03/13/03	72.75	68.15	
5,548.85				05/24/05	72.75	67.95	
5,548.73				06/30/05	72.55	68.07	
5,548.62				07/29/05	72.78	68.18	
5,548.80				09/12/05	72.78	68.00	
5,548.71				12/07/05	72.69	68.09	
5,549.72				03/08/06	71.68	67.08	
5,549.70				06/13/06	71.70	67.10	
5,549.70				07/18/06	71.70	67.10	
5,549.65				11/07/06	71.75	67.15	
5,551.11				02/27/07	70.29	65.69	
5,550.20				05/02/07	71.20	66.60	
5,550.59				08/14/07	70.81	66.21	
5,550.76				10/10/07	70.64	66.04	
5,551.95				03/26/08	69.45	64.85	
5,552.36				06/24/08	69.04	64.44	
5,552.50				08/26/08	68.9	64.30	
5,552.56				10/14/08	68.84	64.24	
5,552.91				03/03/09	68.49	63.89	
5,553.27				06/24/09	68.13	63.53	
5,553.12				09/10/09	68.28	63.68	
5,553.63				12/11/09	67.77	63.17	
5,554.65				03/11/10	66.75	62.15	
5,554.57				05/11/10	66.83	62.23	
5,554.34				09/29/10	67.06	62.46	
5,554.09				12/21/10	67.31	62.71	
5,554.50				02/28/11	66.9	62.30	
5,554.79				06/21/11	66.61	62.01	
5,554.63				09/20/11	66.77	62.17	
5,555.01				12/21/11	66.39	61.79	
5,554.85				03/27/12	66.55	61.95	
5,554.90				06/28/12	66.50	61.90	
5,554.85				09/27/12	66.55	61.95	
5,554.86				12/28/12	66.54	61.94	
5,556.48				03/28/13	64.92	60.32	
5,556.35				06/27/13	65.05	60.45	
5,556.60				09/27/13	64.8	60.20	

Water Elevation Elevation Elevation Patrice (Land) Measured Variance (Land) Measured Point (Land) Measured Point (Land) Total Depth of Water (Macro) Well Well (Well) Total Depth of Water (Measured) Well (Well) Total Depth of Water (Measured) Well (Well) Well						Total or		
Chevation Circuit Ci			Measuring			Measured	Total	
(WL) (LSD) (MP) Riser (L) Monitoring (blw.MP) (blw.LSD) Well 5,577.09 5,636.11 5,637.59 1.48 12/20/99 60.50 59.02 5,577.09 01/02/00 60.50 59.02 5577.29 5,577.29 01/17/00 60.50 59.02 5,577.39 01/24/00 60.50 59.02 5,577.29 02/01/00 60.30 58.82 5,577.19 02/01/00 60.30 58.82 5,577.69 02/14/00 59.90 58.42 5,577.79 03/01/00 59.80 58.32 5,577.79 03/08/00 59.80 58.32 5,577.80 03/15/00 59.80 58.32 5,577.79 03/08/00 59.80 58.32 5,578.41 03/29/00 59.45 57.97 5,578.44 03/29/00 59.45 57.97 5,578.39 04/28/00 59.25 58.07 5,578.39 05/11/00 59.20 57.72	Water	Land	Point			Depth to	Depth to	Total
5,577.09 1.48 121.33 5,577.09 01/02/00 60.50 59.02 5,577.29 01/10/00 60.50 59.02 5,577.39 01/11/10/00 60.30 58.82 5,577.39 01/24/00 60.20 58.72 5,577.29 02/01/00 60.30 58.82 5,577.19 02/07/00 60.40 58.92 5,577.69 02/14/00 59.90 58.42 5,577.79 03/01/00 59.80 58.32 5,577.79 03/01/00 59.80 58.32 5,577.89 03/15/00 59.70 58.22 5,578.4 03/15/00 59.70 58.22 5,568.49 03/20/00 69.10 67.62 5,578.14 03/29/00 59.45 57.97 5,578.24 04/21/00 59.35 58.27 5,578.39 04/28/00 59.20 57.72 5,578.39 05/01/00 59.20 57.72 5,578.39 05/01/00 59.20<	Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
5,577.09 12/20/99 60.50 59.02 5,577.09 01/02/00 60.50 59.02 5,577.29 01/10/00 60.30 58.82 5,577.39 01/24/00 60.20 58.72 5,577.39 01/24/00 60.20 58.72 5,577.19 02/07/00 60.40 58.92 5,577.69 02/14/00 59.90 58.42 5,577.69 02/23/00 59.90 58.42 5,577.79 03/01/00 59.80 58.32 5,577.89 03/15/00 59.70 58.22 5,577.89 03/15/00 59.70 58.22 5,578.14 03/29/00 59.45 57.97 5,577.84 04/04/00 59.75 58.27 5,578.34 04/13/00 59.35 58.77 5,578.39 04/22/00 59.45 57.97 5,578.39 04/22/00 59.35 57.87 5,578.79 05/11/00 58.80 57.32 5,578.79 05/11/00	(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
5,577.09 01/02/00 60.50 59.02 5,577.29 01/10/00 60.30 58.82 5,577.09 01/17/00 60.50 59.02 5,577.39 01/24/00 60.20 58.72 5,577.19 02/01/00 60.30 58.82 5,577.19 02/07/00 60.40 58.92 5,577.69 02/14/00 59.90 58.42 5,577.79 03/01/00 59.80 58.32 5,577.89 03/15/00 59.80 58.32 5,577.89 03/15/00 59.70 58.22 5,578.84 03/20/00 69.10 67.62 5,578.14 03/29/00 59.55 58.07 5,578.24 04/21/00 59.55 58.07 5,578.39 05/01/00 59.20 57.72 5,578.39 05/01/00 59.20 57.72 5,578.39 05/01/00 59.20 57.72 5,578.79 05/15/00 58.80 57.32 5,578.79 05/25/00		5,636.11	5,637.59	1.48				121.33
5,577.29 01/10/00 60.30 58.82 5,577.39 01/17/00 60.50 59.02 5,577.39 01/24/00 60.20 58.72 5,577.19 02/01/00 60.30 58.82 5,577.19 02/07/00 60.40 58.92 5,577.69 02/14/00 59.90 58.42 5,577.79 03/01/00 59.80 58.32 5,577.89 03/15/00 59.80 58.32 5,577.89 03/15/00 59.70 58.22 5,586.49 03/20/00 69.10 67.62 5,578.14 03/29/00 59.45 57.97 5,578.84 04/04/00 59.75 58.27 5,578.39 04/13/00 59.35 57.87 5,578.39 04/21/00 59.35 57.87 5,578.39 04/22/00 59.20 57.72 5,578.39 05/11/00 59.20 57.72 5,578.39 05/11/00 58.80 57.32 5,578.79 05/11/00	5,577.09				12/20/99	60.50	59.02	
5,577.09 01/17/00 60.50 59.02 5,577.39 01/24/00 60.20 58.72 5,577.29 02/01/00 60.30 58.82 5,577.19 02/07/00 60.40 58.92 5,577.69 02/14/00 59.90 58.42 5,577.79 03/01/00 59.80 58.32 5,577.79 03/08/00 59.80 58.32 5,577.89 03/15/00 59.70 58.22 5,578.84 03/29/00 69.10 67.62 5,578.14 03/29/00 59.45 57.97 5,578.04 04/13/00 59.55 58.27 5,578.04 04/13/00 59.55 58.07 5,578.39 04/22/00 59.25 58.07 5,578.39 05/01/00 59.20 57.72 5,578.79 05/15/00 59.20 57.72 5,578.79 05/15/00 58.80 57.32 5,578.81 06/06/00 58.78 57.32 5,578.89 06/16/00	5,577.09				01/02/00	60.50	59.02	
5,577.39 01/24/00 60.20 58.72 5,577.29 02/01/00 60.30 58.82 5,577.19 02/07/00 60.40 58.92 5,577.69 02/14/00 59.90 58.42 5,577.69 02/23/00 59.90 58.42 5,577.79 03/01/00 59.80 58.32 5,577.89 03/15/00 59.70 58.22 5,588.49 03/20/00 69.10 67.62 5,578.14 03/29/00 59.45 57.97 5,578.40 04/04/00 59.75 58.27 5,578.04 04/13/00 59.35 57.87 5,578.24 04/21/00 59.35 57.87 5,578.39 05/01/00 59.20 57.72 5,578.39 05/01/00 59.20 57.72 5,578.79 05/11/00 58.80 57.32 5,578.89 05/01/00 59.20 57.72 5,578.81 06/09/00 58.78 57.32 5,578.89 06/16/00	5,577.29				01/10/00	60.30	58.82	
5,577.29 02/01/00 60.30 58.82 5,577.69 02/07/00 60.40 58.92 5,577.69 02/14/00 59.90 58.42 5,577.69 02/23/00 59.90 58.42 5,577.79 03/01/00 59.80 58.32 5,577.89 03/15/00 59.70 58.22 5,568.49 03/20/00 69.10 67.62 5,578.14 03/29/00 59.45 57.97 5,578.84 04/04/00 59.75 58.27 5,578.84 04/13/00 59.35 57.87 5,578.24 04/21/00 59.35 57.87 5,578.39 04/228/00 59.20 57.72 5,578.39 05/01/00 59.20 57.72 5,578.39 05/01/00 59.20 57.72 5,578.39 05/11/00 58.80 57.32 5,578.79 05/25/00 58.80 57.32 5,578.79 05/25/00 58.80 57.30 5,578.81 06/09/0	5,577.09				01/17/00	60.50	59.02	
5,577.19 02/07/00 60.40 58.92 5,577.69 02/14/00 59.90 58.42 5,577.69 02/23/00 59.90 58.42 5,577.79 03/01/00 59.80 58.32 5,577.89 03/15/00 59.70 58.22 5,588.49 03/29/00 69.10 67.62 5,578.14 03/29/00 59.45 57.97 5,578.04 04/13/00 59.55 58.07 5,578.24 04/21/00 59.55 58.07 5,578.39 04/28/00 59.20 57.72 5,578.39 05/11/00 59.20 57.72 5,578.79 05/11/00 59.20 57.72 5,578.79 05/15/00 59.20 57.72 5,578.81 06/09/00 58.80 57.32 5,578.81 06/09/00 58.78 57.32 5,578.81 06/09/00 58.78 57.32 5,578.81 06/09/00 58.78 57.32 5,578.84 07/06/00	5,577.39				01/24/00	60.20	58.72	
5,577.69 02/14/00 59.90 58.42 5,577.69 02/23/00 59.90 58.42 5,577.79 03/01/00 59.80 58.32 5,577.89 03/15/00 59.70 58.22 5,578.89 03/20/00 69.10 67.62 5,578.14 03/29/00 59.45 57.97 5,578.14 03/29/00 59.45 57.97 5,578.24 04/04/00 59.75 58.27 5,578.39 04/28/00 59.35 57.87 5,578.39 05/01/00 59.20 57.72 5,578.79 05/11/00 59.20 57.72 5,578.79 05/11/00 58.80 57.32 5,578.89 05/02/00 58.80 57.32 5,578.89 05/15/00 59.20 57.72 5,578.89 05/15/00 58.80 57.32 5,578.81 06/09/00 58.78 57.30 5,578.89 06/16/00 58.70 57.22 5,578.87 07/13/00	5,577.29				02/01/00	60.30	58.82	
5,577.69 02/23/00 59.90 58.42 5,577.79 03/01/00 59.80 58.32 5,577.89 03/15/00 59.70 58.22 5,568.49 03/20/00 69.10 67.62 5,578.14 03/29/00 59.45 57.97 5,578.44 04/04/00 59.75 58.27 5,578.04 04/13/00 59.35 57.87 5,578.39 04/28/00 59.20 57.72 5,578.39 05/01/00 59.20 57.72 5,578.79 05/11/00 58.80 57.32 5,578.79 05/11/00 58.80 57.32 5,578.79 05/11/00 58.80 57.32 5,578.81 06/09/00 58.78 57.32 5,578.89 05/15/00 59.20 57.72 5,578.81 06/09/00 58.78 57.30 5,578.89 06/16/00 58.70 57.22 5,578.81 06/26/00 58.85 57.37 5,578.86 07/08/00	5,577.19				02/07/00	60.40	58.92	
5,577.79 03/01/00 59.80 58.32 5,577.89 03/08/00 59.80 58.32 5,577.89 03/15/00 59.70 58.22 5,568.49 03/20/00 69.10 67.62 5,578.14 03/29/00 59.45 57.97 5,578.64 04/04/00 59.55 58.07 5,578.24 04/21/00 59.35 57.87 5,578.39 04/28/00 59.20 57.72 5,578.39 05/01/00 59.20 57.72 5,578.39 05/15/00 59.20 57.72 5,578.79 05/15/00 59.20 57.72 5,578.89 05/15/00 58.80 57.32 5,578.81 06/09/00 58.78 57.30 5,578.89 06/16/00 58.70 57.22 5,578.89 06/16/00 58.70 57.22 5,578.84 06/26/00 58.85 57.37 5,578.86 07/013/00 58.75 57.27 5,579.86 07/13/0	5,577.69				02/14/00	59.90	58.42	
5,577.79 03/08/00 59.80 58.32 5,577.89 03/15/00 59.70 58.22 5,588.49 03/20/00 69.10 67.62 5,578.14 03/29/00 59.45 57.97 5,577.84 04/04/00 59.75 58.27 5,578.04 04/13/00 59.55 58.07 5,578.24 04/21/00 59.35 57.87 5,578.39 04/28/00 59.20 57.72 5,578.39 05/01/00 59.20 57.72 5,578.39 05/15/00 59.20 57.72 5,578.79 05/25/00 58.80 57.32 5,578.81 06/09/00 58.78 57.30 5,578.89 06/16/00 58.70 57.22 5,578.81 06/26/00 58.85 57.37 5,578.87 07/13/00 58.75 57.27 5,578.87 07/13/00 58.75 57.27 5,578.84 07/18/00 58.75 57.27 5,579.03 07/27/00	5,577.69				02/23/00	59.90	58.42	
5,577.89 03/15/00 59.70 58.22 5,568.49 03/20/00 69.10 67.62 5,578.14 03/29/00 59.45 57.97 5,577.84 04/04/00 59.75 58.27 5,578.04 04/13/00 59.55 58.07 5,578.24 04/21/00 59.35 57.87 5,578.39 04/28/00 59.20 57.72 5,578.79 05/11/00 58.80 57.32 5,578.79 05/15/00 59.20 57.72 5,578.81 06/09/00 58.78 57.30 5,578.89 06/16/00 58.70 57.22 5,578.81 06/09/00 58.78 57.30 5,578.84 07/06/00 58.70 57.22 5,578.86 07/06/00 58.73 57.25 5,578.87 07/13/00 58.72 57.24 5,579.88 07/18/00 58.75 57.27 5,579.03 07/27/00 58.56 57.08 5,579.03 08/09/00	5,577.79				03/01/00	59.80	58.32	
5,568.49 03/20/00 69.10 67.62 5,578.14 03/29/00 59.45 57.97 5,577.84 04/04/00 59.75 58.27 5,578.04 04/13/00 59.55 58.07 5,578.24 04/21/00 59.35 57.87 5,578.39 04/28/00 59.20 57.72 5,578.79 05/11/00 58.80 57.32 5,578.79 05/15/00 58.80 57.32 5,578.81 06/09/00 58.78 57.30 5,578.89 06/16/00 58.70 57.22 5,578.81 06/09/00 58.75 57.32 5,578.81 06/09/00 58.75 57.22 5,578.84 07/16/00 58.73 57.22 5,578.86 07/06/00 58.73 57.25 5,578.84 07/18/00 58.75 57.27 5,579.03 07/27/00 58.56 57.08 5,579.03 07/27/00 58.56 57.08 5,579.04 08/15/00	5,577.79				03/08/00	59.80	58.32	
5,578.14 03/29/00 59.45 57.97 5,577.84 04/04/00 59.75 58.27 5,578.04 04/13/00 59.55 58.07 5,578.24 04/21/00 59.35 57.87 5,578.39 04/28/00 59.20 57.72 5,578.39 05/01/00 59.20 57.72 5,578.79 05/15/00 59.20 57.72 5,578.39 05/15/00 59.20 57.72 5,578.79 05/25/00 58.80 57.32 5,578.81 06/09/00 58.78 57.30 5,578.89 06/16/00 58.70 57.22 5,578.89 06/16/00 58.73 57.22 5,578.89 06/16/00 58.73 57.22 5,578.80 07/06/00 58.73 57.22 5,578.84 07/18/00 58.72 57.24 5,579.03 07/27/00 58.75 57.27 5,579.03 07/27/00 58.56 57.08 5,579.05 08/09/00	5,577.89				03/15/00	59.70	58.22	
5,577.84 04/04/00 59.75 58.27 5,578.04 04/13/00 59.55 58.07 5,578.24 04/21/00 59.35 57.87 5,578.39 04/28/00 59.20 57.72 5,578.39 05/01/00 59.20 57.72 5,578.79 05/11/00 58.80 57.32 5,578.79 05/25/00 58.80 57.32 5,578.81 06/09/00 58.78 57.30 5,578.89 06/16/00 58.70 57.22 5,578.81 06/26/00 58.85 57.37 5,578.89 06/16/00 58.70 57.22 5,578.81 06/26/00 58.85 57.37 5,578.87 07/06/00 58.73 57.25 5,578.87 07/13/00 58.72 57.24 5,578.87 07/13/00 58.72 57.24 5,579.88 07/18/00 58.75 57.27 5,579.03 07/27/00 58.56 57.08 5,579.03 08/09/00	5,568.49				03/20/00	69.10	67.62	
5,578.04 04/13/00 59.55 58.07 5,578.24 04/21/00 59.35 57.87 5,578.39 04/28/00 59.20 57.72 5,578.39 05/01/00 59.20 57.72 5,578.79 05/11/00 58.80 57.32 5,578.39 05/15/00 59.20 57.72 5,578.79 05/25/00 58.80 57.32 5,578.79 05/25/00 58.80 57.32 5,578.79 05/25/00 58.80 57.32 5,578.81 06/09/00 58.78 57.30 5,578.89 06/16/00 58.70 57.22 5,578.86 07/06/00 58.73 57.25 5,578.87 07/13/00 58.72 57.24 5,579.03 07/27/00 58.56 57.08 5,579.03 08/02/00 58.56 57.08 5,579.05 08/09/00 58.54 57.06 5,579.05 08/09/00 58.54 57.07 5,579.25 08/31/00	5,578.14				03/29/00	59.45	57.97	
5,578.24 04/21/00 59.35 57.87 5,578.39 04/28/00 59.20 57.72 5,578.39 05/01/00 59.20 57.72 5,578.79 05/11/00 58.80 57.32 5,578.79 05/15/00 59.20 57.72 5,578.79 05/25/00 58.80 57.32 5,578.81 06/09/00 58.78 57.30 5,578.89 06/16/00 58.70 57.22 5,578.80 07/06/00 58.85 57.37 5,578.86 07/06/00 58.73 57.25 5,578.84 07/13/00 58.72 57.24 5,579.03 07/27/00 58.56 57.08 5,579.03 08/02/00 58.56 57.08 5,579.04 08/15/00 58.55 57.07 5,579.25 08/31/00 58.34 56.86 5,579.35 09/08/00 58.24 56.76 5,579.40 09/13/00 58.13 56.65 5,579.44 10/05/00 58.13 56.65 5,579.79 11/09/00 57.86	5,577.84				04/04/00	59.75	58.27	
5,578.39 04/28/00 59.20 57.72 5,578.39 05/01/00 59.20 57.72 5,578.79 05/11/00 58.80 57.32 5,578.39 05/15/00 59.20 57.72 5,578.79 05/25/00 58.80 57.32 5,578.81 06/09/00 58.78 57.30 5,578.89 06/16/00 58.70 57.22 5,578.86 07/06/00 58.73 57.25 5,578.87 07/13/00 58.72 57.24 5,579.03 07/27/00 58.56 57.08 5,579.03 08/02/00 58.56 57.08 5,579.04 08/15/00 58.34 56.86 5,579.25 08/31/00 58.34 56.86 5,579.35 09/08/00 58.24 56.76 5,579.46 09/13/00 58.13 56.65 5,579.79 11/09/00 57.80 56.32 5,579.79 11/09/00 57.80 56.32 5,579.79 11/09/00 57.80 56.32 5,579.79 11/09/00 57.80	5,578.04				04/13/00	59.55	58.07	
5,578.39 05/01/00 59.20 57.72 5,578.79 05/11/00 58.80 57.32 5,578.39 05/15/00 59.20 57.72 5,578.79 05/25/00 58.80 57.32 5,578.81 06/09/00 58.78 57.30 5,578.89 06/16/00 58.70 57.22 5,578.86 07/06/00 58.73 57.25 5,578.87 07/13/00 58.72 57.24 5,578.84 07/18/00 58.75 57.27 5,579.03 07/27/00 58.56 57.08 5,579.03 08/02/00 58.56 57.08 5,579.04 08/15/00 58.55 57.07 5,579.25 08/31/00 58.34 56.86 5,579.35 09/08/00 58.24 56.76 5,579.46 09/13/00 58.19 56.71 5,579.79 11/09/00 57.80 56.32 5,579.79 11/09/00 57.80 56.32 5,579.79 11/09/00 57.80 56.32 5,579.79 11/09/00 57.80	5,578.24				04/21/00	59.35	57.87	
5,578.79 05/11/00 58.80 57.32 5,578.39 05/15/00 59.20 57.72 5,578.79 05/25/00 58.80 57.32 5,578.81 06/09/00 58.78 57.30 5,578.89 06/16/00 58.70 57.22 5,578.74 06/26/00 58.85 57.37 5,578.86 07/06/00 58.73 57.25 5,578.87 07/13/00 58.72 57.24 5,579.03 07/27/00 58.56 57.08 5,579.03 08/02/00 58.56 57.08 5,579.04 08/15/00 58.55 57.07 5,579.25 08/31/00 58.34 56.86 5,579.35 09/08/00 58.24 56.76 5,579.40 09/13/00 58.19 56.71 5,579.46 09/20/00 58.13 56.65 5,579.79 11/09/00 57.80 56.32 5,579.73 12/06/00 57.86 56.32 5,580.01 01/03/01 57.58 56.10 5,580.30 02/09/01 57.29	5,578.39				04/28/00	59.20	57.72	
5,578.39 05/15/00 59.20 57.72 5,578.79 05/25/00 58.80 57.32 5,578.81 06/09/00 58.78 57.30 5,578.89 06/16/00 58.70 57.22 5,578.74 06/26/00 58.85 57.37 5,578.86 07/06/00 58.73 57.25 5,578.87 07/13/00 58.72 57.24 5,579.03 07/27/00 58.56 57.08 5,579.03 08/02/00 58.56 57.08 5,579.05 08/09/00 58.56 57.07 5,579.25 08/31/00 58.55 57.07 5,579.35 09/08/00 58.24 56.76 5,579.40 09/13/00 58.19 56.71 5,579.46 09/20/00 58.15 56.65 5,579.79 11/09/00 57.80 56.32 5,579.73 12/06/00 57.86 56.38 5,580.01 01/03/01 57.58 56.10 5,580.30 02/09/01 57.29 55.81 5,580.66 03/27/01 56.93	5,578.39				05/01/00	59.20	57.72	
5,578.79 05/25/00 58.80 57.32 5,578.81 06/09/00 58.78 57.30 5,578.89 06/16/00 58.70 57.22 5,578.74 06/26/00 58.85 57.37 5,578.86 07/06/00 58.73 57.25 5,578.87 07/13/00 58.72 57.24 5,579.03 07/27/00 58.56 57.08 5,579.03 08/02/00 58.56 57.08 5,579.05 08/09/00 58.54 57.06 5,579.04 08/15/00 58.34 56.86 5,579.35 09/08/00 58.24 56.76 5,579.40 09/13/00 58.19 56.71 5,579.46 09/20/00 58.13 56.65 5,579.79 11/09/00 57.80 56.32 5,579.73 12/06/00 57.86 56.38 5,580.01 01/03/01 57.58 56.10 5,580.66 03/27/01 56.93 55.45	5,578.79				05/11/00	58.80	57.32	
5,578.81 06/09/00 58.78 57.30 5,578.89 06/16/00 58.70 57.22 5,578.74 06/26/00 58.85 57.37 5,578.86 07/06/00 58.73 57.25 5,578.87 07/13/00 58.72 57.24 5,579.03 07/27/00 58.56 57.08 5,579.03 08/02/00 58.56 57.08 5,579.05 08/09/00 58.54 57.06 5,579.04 08/15/00 58.55 57.07 5,579.25 08/31/00 58.34 56.86 5,579.35 09/08/00 58.24 56.76 5,579.40 09/13/00 58.19 56.71 5,579.46 09/20/00 58.13 56.65 5,579.79 11/09/00 57.80 56.32 5,579.73 12/06/00 57.86 56.38 5,580.01 01/03/01 57.58 56.10 5,580.30 02/09/01 57.29 55.81 5,580.66 03/27/01 56.93 55.45	5,578.39				05/15/00	59.20	57.72	
5,578.89 06/16/00 58.70 57.22 5,578.74 06/26/00 58.85 57.37 5,578.86 07/06/00 58.73 57.25 5,578.87 07/13/00 58.72 57.24 5,578.84 07/18/00 58.75 57.27 5,579.03 07/27/00 58.56 57.08 5,579.03 08/02/00 58.56 57.08 5,579.05 08/09/00 58.54 57.06 5,579.04 08/15/00 58.55 57.07 5,579.25 08/31/00 58.34 56.86 5,579.35 09/08/00 58.24 56.76 5,579.40 09/13/00 58.19 56.71 5,579.46 09/20/00 58.13 56.65 5,579.79 11/09/00 57.80 56.32 5,579.73 12/06/00 57.86 56.38 5,580.01 01/03/01 57.29 55.81 5,580.66 03/27/01 56.93 55.45	5,578.79				05/25/00	58.80	57.32	
5,578.74 06/26/00 58.85 57.37 5,578.86 07/06/00 58.73 57.25 5,578.87 07/13/00 58.72 57.24 5,578.84 07/18/00 58.75 57.27 5,579.03 07/27/00 58.56 57.08 5,579.03 08/02/00 58.56 57.08 5,579.05 08/09/00 58.54 57.06 5,579.25 08/31/00 58.34 56.86 5,579.35 09/08/00 58.24 56.76 5,579.40 09/13/00 58.19 56.71 5,579.46 09/20/00 58.13 56.65 5,579.79 11/09/00 57.80 56.32 5,579.73 12/06/00 57.86 56.32 5,580.01 01/03/01 57.58 56.10 5,580.30 02/09/01 57.29 55.81 5,580.66 03/27/01 56.93 55.45	5,578.81				06/09/00	58.78	57.30	
5,578.86 07/06/00 58.73 57.25 5,578.87 07/13/00 58.72 57.24 5,578.84 07/18/00 58.75 57.27 5,579.03 07/27/00 58.56 57.08 5,579.03 08/02/00 58.56 57.08 5,579.05 08/09/00 58.54 57.06 5,579.04 08/15/00 58.55 57.07 5,579.25 08/31/00 58.34 56.86 5,579.35 09/08/00 58.24 56.76 5,579.40 09/13/00 58.19 56.71 5,579.46 09/20/00 58.13 56.65 5,579.79 11/09/00 57.80 56.32 5,579.73 12/06/00 57.86 56.38 5,580.01 01/03/01 57.58 56.10 5,580.30 02/09/01 57.29 55.81 5,580.66 03/27/01 56.93 55.45	5,578.89				06/16/00	58.70	57.22	
5,578.87 07/13/00 58.72 57.24 5,578.84 07/18/00 58.75 57.27 5,579.03 07/27/00 58.56 57.08 5,579.03 08/02/00 58.56 57.08 5,579.05 08/09/00 58.54 57.06 5,579.04 08/15/00 58.55 57.07 5,579.25 08/31/00 58.34 56.86 5,579.35 09/08/00 58.24 56.76 5,579.40 09/13/00 58.19 56.71 5,579.46 09/20/00 58.13 56.65 5,579.79 11/09/00 57.80 56.32 5,579.73 12/06/00 57.86 56.38 5,580.01 01/03/01 57.58 56.10 5,580.30 02/09/01 57.29 55.81 5,580.66 03/27/01 56.93 55.45	5,578.74					58.85	57.37	
5,578.84 07/18/00 58.75 57.27 5,579.03 07/27/00 58.56 57.08 5,579.03 08/02/00 58.56 57.08 5,579.05 08/09/00 58.54 57.06 5,579.04 08/15/00 58.55 57.07 5,579.25 08/31/00 58.34 56.86 5,579.35 09/08/00 58.24 56.76 5,579.40 09/13/00 58.19 56.71 5,579.46 09/20/00 58.13 56.65 5,579.79 11/09/00 57.80 56.32 5,579.73 12/06/00 57.86 56.38 5,580.01 01/03/01 57.58 56.10 5,580.30 02/09/01 57.29 55.81 5,580.66 03/27/01 56.93 55.45	5,578.86					58.73	57.25	
5,579.03 07/27/00 58.56 57.08 5,579.03 08/02/00 58.56 57.08 5,579.05 08/09/00 58.54 57.06 5,579.04 08/15/00 58.55 57.07 5,579.25 08/31/00 58.34 56.86 5,579.35 09/08/00 58.24 56.76 5,579.40 09/13/00 58.19 56.71 5,579.46 09/20/00 58.13 56.65 5,579.44 10/05/00 58.15 56.67 5,579.79 11/09/00 57.80 56.32 5,579.73 12/06/00 57.86 56.38 5,580.30 01/03/01 57.58 56.10 5,580.30 02/09/01 57.29 55.81 5,580.66 03/27/01 56.93 55.45	5,578.87				07/13/00	58.72	57.24	
5,579.03 08/02/00 58.56 57.08 5,579.05 08/09/00 58.54 57.06 5,579.04 08/15/00 58.55 57.07 5,579.25 08/31/00 58.34 56.86 5,579.35 09/08/00 58.24 56.76 5,579.40 09/13/00 58.19 56.71 5,579.46 09/20/00 58.13 56.65 5,579.44 10/05/00 58.15 56.67 5,579.79 11/09/00 57.80 56.32 5,579.73 12/06/00 57.86 56.38 5,580.01 01/03/01 57.58 56.10 5,580.30 02/09/01 57.29 55.81 5,580.66 03/27/01 56.93 55.45	5,578.84				07/18/00	58.75	57.27	
5,579.05 08/09/00 58.54 57.06 5,579.04 08/15/00 58.55 57.07 5,579.25 08/31/00 58.34 56.86 5,579.35 09/08/00 58.24 56.76 5,579.40 09/13/00 58.19 56.71 5,579.46 09/20/00 58.13 56.65 5,579.44 10/05/00 58.15 56.67 5,579.79 11/09/00 57.80 56.32 5,579.73 12/06/00 57.86 56.38 5,580.01 01/03/01 57.58 56.10 5,580.30 02/09/01 57.29 55.81 5,580.66 03/27/01 56.93 55.45	5,579.03				07/27/00	58.56		
5,579.04 08/15/00 58.55 57.07 5,579.25 08/31/00 58.34 56.86 5,579.35 09/08/00 58.24 56.76 5,579.40 09/13/00 58.19 56.71 5,579.46 09/20/00 58.13 56.65 5,579.44 10/05/00 58.15 56.67 5,579.79 11/09/00 57.80 56.32 5,579.73 12/06/00 57.86 56.38 5,580.01 01/03/01 57.58 56.10 5,580.30 02/09/01 57.29 55.81 5,580.66 03/27/01 56.93 55.45						58.56		
5,579.25 08/31/00 58.34 56.86 5,579.35 09/08/00 58.24 56.76 5,579.40 09/13/00 58.19 56.71 5,579.46 09/20/00 58.13 56.65 5,579.44 10/05/00 58.15 56.67 5,579.79 11/09/00 57.80 56.32 5,579.73 12/06/00 57.86 56.38 5,580.01 01/03/01 57.58 56.10 5,580.30 02/09/01 57.29 55.81 5,580.66 03/27/01 56.93 55.45					08/09/00	58.54		
5,579.35 09/08/00 58.24 56.76 5,579.40 09/13/00 58.19 56.71 5,579.46 09/20/00 58.13 56.65 5,579.44 10/05/00 58.15 56.67 5,579.79 11/09/00 57.80 56.32 5,579.73 12/06/00 57.86 56.38 5,580.01 01/03/01 57.58 56.10 5,580.30 02/09/01 57.29 55.81 5,580.66 03/27/01 56.93 55.45	5,579.04				08/15/00			
5,579.40 09/13/00 58.19 56.71 5,579.46 09/20/00 58.13 56.65 5,579.44 10/05/00 58.15 56.67 5,579.79 11/09/00 57.80 56.32 5,579.73 12/06/00 57.86 56.38 5,580.01 01/03/01 57.58 56.10 5,580.30 02/09/01 57.29 55.81 5,580.66 03/27/01 56.93 55.45	5,579.25				08/31/00	58.34	56.86	
5,579.46 09/20/00 58.13 56.65 5,579.44 10/05/00 58.15 56.67 5,579.79 11/09/00 57.80 56.32 5,579.73 12/06/00 57.86 56.38 5,580.01 01/03/01 57.58 56.10 5,580.30 02/09/01 57.29 55.81 5,580.66 03/27/01 56.93 55.45					09/08/00			
5,579.44 10/05/00 58.15 56.67 5,579.79 11/09/00 57.80 56.32 5,579.73 12/06/00 57.86 56.38 5,580.01 01/03/01 57.58 56.10 5,580.30 02/09/01 57.29 55.81 5,580.66 03/27/01 56.93 55.45								
5,579.79 11/09/00 57.80 56.32 5,579.73 12/06/00 57.86 56.38 5,580.01 01/03/01 57.58 56.10 5,580.30 02/09/01 57.29 55.81 5,580.66 03/27/01 56.93 55.45								
5,579.73 12/06/00 57.86 56.38 5,580.01 01/03/01 57.58 56.10 5,580.30 02/09/01 57.29 55.81 5,580.66 03/27/01 56.93 55.45								
5,580.01 01/03/01 57.58 56.10 5,580.30 02/09/01 57.29 55.81 5,580.66 03/27/01 56.93 55.45								
5,580.30 02/09/01 57.29 55.81 5,580.66 03/27/01 56.93 55.45								
5,580.66 03/27/01 56.93 55.45								
5,580.75 04/30/01 56.84 55.36	5,580.66							
	5,580.75				04/30/01	56.84	55.36	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,636.11	5,637.59	1.48				121.33
5,581.04				05/31/01	56.55	55.07	
5,581.12				06/21/01	56.47	54.99	
5,581.15				07/10/01	56.44	54.96	
5,581.51				08/20/01	56.08	54.60	
5,581.70				09/19/01	55.89	54.41	
5,581.61				10/02/01	55.98	54.50	
5,581.83				11/08/01	55.76	54.28	
5,582.17				12/03/01	55.42	53.94	
5,582.21				01/03/02	55.38	53.90	
5,582.57				02/06/02	55.02	53.54	
5,583.12				03/26/02	54.47	52.99	
5,582.77				04/09/02	54.82	53.34	
5,583.21				05/23/02	54.38	52.90	
5,582.94				06/05/02	54.65	53.17	
5,582.71				07/08/02	54.88	53.40	
5,583.67				08/23/02	53.92	52.44	
5,583.82				09/11/02	53.77	52.29	
5,584.01				10/23/02	53.58	52.10	
5,583.88				11/22/02	53.71	52.23	
5,583.81				12/03/02	53.78	52.30	
5,584.28				01/09/03	53.31	51.83	
5,584.41				02/12/03	53.18	51.70	
5,584.68				03/26/03	52.91	51.43	
5,584.49				04/02/03	53.10	51.62	
5,584.51				05/01/03	53.08	51.60	
5,583.59				06/09/03	54.00	52.52	
5,582.96				07/07/03	54.63	53.15	
5,582.98				08/04/03	54.61	53.13	
5,582.57				09/11/03	55.02	53.54	
5,582.25				10/02/03	55.34	53.86	
5,582.09				11/07/03	55.50	54.02	
5,582.48				12/03/03	55.11	53.63	
5,583.69				01/15/04	53.90	52.42	
5,583.89				02/10/04	53.70	52.22	
5,584.30				03/28/04	53.29	51.81	
5,584.59				04/12/04	53.00	51.52	
5,584.87				05/13/04	52.72	51.24	
5,584.96				06/18/04	52.63	51.15	
5,585.50				07/28/04	52.09	50.61	
5,584.81				08/30/04	52.78	51.30	
5,584.40				09/16/04	53.19	51.71	
5,583.91				10/11/04	53.68	52.20	
5,583.39				11/16/04	54.20	52.72	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,636.11	5,637.59	1.48				121.33
5,583.54				12/22/04	54.05	52.57	
5,583.34				01/18/05	54.25	52.77	
5,583.66				02/28/05	53.93	52.45	
5,583.87				03/15/05	53.72	52.24	
5,584.74				04/26/05	52.85	51.37	
5,585.26				05/24/05	52.33	50.85	
5,585.06				06/30/05	52.53	51.05	
5,584.67				07/29/05	52.92	51.44	
5,584.75				09/12/05	52.84	51.36	
5,584.51				12/07/05	53.08	51.60	
5,585.74				03/08/06	51.85	50.37	
5,584.74				06/13/06	52.85	51.37	
5,584.26				07/18/06	53.33	51.85	
5,584.21				11/07/06	53.38	51.90	
5,584.67				02/27/07	52.92	51.44	
5,584.06				05/02/07	53.53	52.05	
5,585.33				08/14/07	52.26	50.78	
5,585.42				10/10/07	52.17	50.69	
5,587.01				03/26/08	50.58	49.10	
5,585.44				06/24/08	52.15	50.67	
5,585.23				08/26/08	52.36	50.88	
5,584.42				10/14/08	53.17	51.69	
5,583.59				03/03/09	54.00	52.52	
5,583.35				06/24/09	54.24	52.76	
5,582.91				09/10/09	54.68	53.20	
5,583.43				12/11/09	54.16	52.68	
5,584.00				03/11/10	53.59	52.11	
5,583.27				05/11/10	54.32	52.84	
5,582.92				09/29/10	54.67	53.19	
5,583.08				12/21/10	54.51	53.03	
5,582.63				02/28/11	54.96	53.48	
5,583.62				06/21/11	53.97	52.49	
5,583.52				09/20/11	54.07	52.59	
5,583.91				12/21/11	53.68	52.20	
5,582.84				03/27/12	54.75	53.27	
5,582.84				06/28/12	54.75	53.27	
5,582.92				09/27/12	54.67	53.19	
5,582.84				12/28/12	54.75	53.27	
5,581.97				03/28/13	55.62	54.14	
5,581.19				06/27/13	56.40	54.92	
5,580.50				09/27/13	57.09	55.61	

					Total or		
		Measuring			Measured		
Water	Land	Point			Depth to	Total Depth	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	to Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,631.99	5,634.24	2.25				111
5,576.75				01/03/02	57,49	55.24	
5,576.92				02/06/02	57.32	55.07	
5,577.43				03/26/02	56.81	54.56	
5,577.22				04/09/02	57.02	54.77	
5,577.80				05/23/02	56.44	54.19	
5,577.47				06/05/02	56.77	54.52	
5,577.55				07/08/02	56.69	54.44	
5,578.10				08/23/02	56.14	53.89	
5,578.24				09/11/02	56.00	53.75	
5,578.49				10/23/02	55.75	53.50	
5,578.43				11/22/02	55.81	53.56	
5,578.43				12/03/02	55.81	53.56	
5,578.66				01/09/03	55.58	53.33	
5,578.66				02/12/03	55.58	53.33	
5,578.78				03/26/03	55.46	53.21	
5,578.90				04/02/03	55.34	53.09	
5,578.83				05/01/03	55.41	53.16	
5,578.05				06/09/03	56.19	53.94	
5,577.38				07/07/03	56.86	54.61	
5,577.15				08/04/03	57.09	54.84	
5,576.76				09/11/03	57.48	55.23	
5,576.36				10/02/03	57.88	55.63	
5,576.05				11/07/03	58.19	55.94	
5,576.20				12/03/03	58.04	55.79	
5,577.43				01/15/04	56.81	54.56	
5,577.81				02/10/04	56.43	54.18	
5,578.47				03/28/04	55.77	53.52	
5,578.69				04/12/04	55.55	53.30	
5,578.93				05/13/04	55.31	53.06	
5,578.99				06/18/04	55.25	53.00	
5,579.18				07/28/04	55.06	52.81	
5,579.06				08/30/04	55.18	52.93	
5,578.78				09/16/04	55.46	53.21	
5,577.80				10/11/04	56.44	54.19	
5,577.13				11/16/04	57.11	54.86	
5,576.96				12/22/04	57.28	55.03	
5,576.63				01/18/05	57.61	55.36	
5,576.82				02/28/05	57.42	55.17	
5,576.86				03/15/05	57.38	55.13	
5,577.52				04/26/05	56.72	54.47	
5,578.01				05/24/05	56.23	53.98	
5,578.15				06/30/05	56.09	53.84	
5,577.90				07/29/05	56.34	54.09	

					Total or		
		Measuring			Measured		
Water	Land	Point			Depth to	Total Depth	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	to Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,631.99	5,634.24	2.25				111
5,578.02				09/12/05	56.22	53.97	
5,577.56				12/07/05	56.68	54.43	
5,579.69				03/08/06	54.55	52.30	
5,578.34				06/13/06	55.90	53.65	
5,577.94				07/18/06	56.30	54.05	
5,578.01				11/07/06	56.23	53.98	
5578.43				02/27/07	55.81	53.56	
5,577.84				05/02/07	56.40	54.15	
5,578.74				08/14/07	55.50	53.25	
5,579.04				10/10/07	55.20	52.95	
5,580.69				03/26/08	53.55	51.30	
5,579.87				06/24/08	54.37	52.12	
5,579.47				08/26/08	54.77	52.52	
5,578.87				10/14/08	55.37	53.12	
5,578.01				03/10/09	56.23	53.98	
5,577.85				06/24/09	56.39	54.14	
5,577.49				09/10/09	56.75	54.50	
5,577.98				12/11/09	56.26	54.01	
5,578.38				03/11/10	55.86	53.61	
5,578.16				05/11/10	56.08	53.83	
5,577.85				09/29/10	56.39	54.14	
5,577.28				12/21/10	56.96	54.71	
5,577.14				02/28/11	57.1	54.85	
5,578.09				06/21/11	56.15	53.90	
5,578.24				09/20/11	56	53.75	
5,578.74				12/21/11	55.5	53.25	
5,577.89				03/27/12	56.35	54.10	
5,577.90				06/28/12	56.34	54.09	
5,578.29				09/27/12	55.95	53.70	
5,577.87				12/28/12	56.37	54.12	
5,577.92				03/28/13	56.32	54.07	
5,577.19				06/27/13	57.05	54.80	
5,576.77				09/27/13	57.47	55.22	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,621.92	5,623.62	1.70				100
5,548.32				01/03/02	75.30	73.60	
5,548.73				02/06/02	74.89	73.19	
5,549.03				03/26/02	74.59	72.89	
5,548.84				04/09/02	74.78	73.08	
5,549.30				05/23/02	74.32	72.62	
5,549.01				06/05/02	74.61	72.91	
5,549.22				07/08/02	74.40	72.70	
5,549.44				08/23/02	74.18	72.48	
5,549.57				09/11/02	74.05	72.35	
5,549.64				10/23/02	73.98	72.28	
5,549.58				11/22/02	74.04	72.34	
5,549.62				12/03/02	74.00	72.30	
5,549.85				01/09/03	73.77	72.07	
5,549.91				02/12/03	73.71	72.01	
5,550.15				03/26/03	73.47	71.77	
5,550.01				04/02/03	73.61	71.91	
5,550.31				05/01/03	73.31	71.61	
5,550.44				06/09/03	73.18	71.48	
5,550.33				07/07/03	73.29	71.59	
5,550.35				08/04/03	73.27	71.57	
5,550.44				09/11/03	73.18	71.48	
5,550.47				10/02/03	73.15	71.45	
5,550.60				11/07/03	73.02	71.32	
5,550.60				12/03/03	73.02	71.32	
5,550.94				01/15/04	72.68	70.98	
5,551.00				02/10/04	72.62	70.92	
5,550.34				03/28/04	73.28	71.58	
5,551.54				04/12/04	72.08	70.38	
5,551.89				05/13/04	71.73	70.03	
5,551.94				06/18/04	71.68	69.98	
5,552.49				07/28/04	71.13	69.43	
5,552.74				08/30/04	70.88	69.18	
5,553.01				09/16/04	70.61	68.91	
5,553.11				10/11/04	70.51	68.81	
5,553.19				11/16/04	70.43	68.73	
5,553.53				12/22/04	70.09	68.39	
5,553.31				01/18/05	70.31	68.61	
5,553.84				02/28/05	69.78	68.08	
5,554.04				03/15/05	69.58	67.88	
5,554.23				04/26/05	69.39	67.69	
5,553.87				05/24/05	69.75	68.05	
5,554.46				06/30/05	69.16	67.46	
5,554.57				07/29/05	69.05	67.35	
-,,							

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,621.92	5,623.62	1.70				100
5,553.86				09/12/05	69.76	68.06	
5,555.30				12/07/05	68.32	66.62	
5,556.20				03/08/06	67.42	65.72	
5,556.48				06/14/06	67.14	65.44	
5,556.37				07/18/06	67.25	65.55	
5,556.94				11/07/06	66.68	64.98	
5557.92				02/27/07	65.70	64	
5,557.84				05/02/07	65.78	64.08	
5,558.02				08/15/07	65.60	63.90	
5,557.13				10/10/07	66.49	64.79	
5,569.74				03/26/08	53.88	52.18	
5,561.01				06/24/08	62.61	60.91	
5,562.07				08/26/08	61.55	59.85	
5,562.47				10/14/08	61.15	59.45	
5,563.80				03/10/09	59.82	58.12	
5,564.27				06/24/09	59.35	57.65	
5,564.32				09/10/09	59.30	57.60	
5,564.70				12/11/09	58.92	57.22	
5,565.14				03/11/10	58.48	56.78	
5,565.61				05/11/10	58.01	56.31	
5,565.67				09/29/10	57.95	56.25	
5,565.62				12/21/10	58.00	56.30	
5,565.42				02/28/11	58.20	56.50	
5,566.01				06/21/11	57.61	55.91	
5,566.03				09/20/11	57.59	55.89	
5,566.63				12/21/11	56.99	55.29	
5,565.81				03/27/12	57.81	56.11	
5,565.82				06/28/12	57.80	56.10	
5,566.66				09/27/12	56.96	55.26	
5,565.77				12/28/12	57.85	56.15	
5,566.89				03/28/13	56.73	55.03	
5,566.32				06/27/13	57.30	55.60	
5,565.92				09/27/13	57.70	56.00	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,622.38	5,624.23	1.85				101.5
5,580.91				08/23/02	43.32	41.47	
5,581.54				09/11/02	42.69	40.84	
5,581.33				10/23/02	42.90	41.05	
5,581.47				11/22/02	42.76	40.91	
5,581.55				12/03/02	42.68	40.83	
5,582.58				01/09/03	41.65	39.80	
5,582.47				02/12/03	41.76	39.91	
5,582.71				03/26/03	41.52	39.67	
5,582.11				04/02/03	42.12	40.27	
5,582.92				05/01/03	41.31	39.46	
5,583.13				06/09/03	41.10	39.25	
5,583.21				07/07/03	41.02	39.17	
5,583.31				08/04/03	40.92	39.07	
5,583.55				09/11/03	40.68	38.83	
5,583.72				10/02/03	40.51	38.66	
5,583.77				11/07/03	40.46	38.61	
5,584.01				12/03/03	40.22	38.37	
5,584.37				01/15/04	39.86	38.01	
5,584.39				02/10/04	39.84	37.99	
5,584.51				03/28/04	39.72	37.87	
5,584.90				04/12/04	39.33	37.48	
5,584.88				05/13/04	39.35	37.50	
5,584.93				06/18/04	39.30	37.45	
5,585.36				07/28/04	38.87	37.02	
5,585.38				08/30/04	38.85	37.00	
5,585.49				09/16/04	38.74	36.89	
5,585.85				10/11/04	38.38	36.53	
5,585.91				11/16/04	38.32	36.47	
5,586.35				12/22/04	37.88	36.03	
5,586.14				01/18/05	38.09	36.24	
5,586.56				02/28/05	37.67	35.82	
5,586.95				03/15/05	37.28	35.43	
5,587.20				04/26/05	37.03	35.18	
5,587.35				05/24/05	36.88	35.03	
5,587.58				06/30/05	36.65	34.80	
5,587.58				07/29/05	36.65	34.80	
5,587.94				09/12/05	36.29	34.44	
5,588.43				12/07/05	35.80	33.95	
5,588.92				03/08/06	35.31	33.46	
5,588.34				06/13/06	35.89	34.04	
5,588.33				07/18/06	35.90	34.05	
5,584.70				11/07/06	39.53	37.68	
5588.85				02/27/07	35.38	33.53	

				Total or		
	Measuring			Measured	Total	
Land	Point			Depth to	Depth to	Total
Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
5,622.38	5,624.23	1.85				101.5
			05/02/07	35.70	33.85	
			08/14/07	37.74	35.89	
			10/10/07	37.55	35.70	
			03/26/08	36.47	34.62	
			06/24/08	36.64	34.79	
			08/26/08	36.88	35.03	
			10/14/08	37.39	35.54	
			03/03/09	38.06	36.21	
			06/24/09	38.49	36.64	
			09/10/09	38.69	36.84	
			12/11/09	38.46	36.61	
			03/11/10	38.35	36.50	
			05/11/10	37.88	36.03	
			09/29/10	38.55	36.70	
			12/21/10	39.14	37.29	
			02/28/11	39.58	37.73	
			06/21/11	39.47	37.62	
			09/20/11	39.91	38.06	
			12/21/11	40.01	38.16	
			03/27/12	47.16	45.31	
			06/28/12	47.18	45.33	
			09/27/12	41.09	39.24	
			12/28/12	47.13	45.28	
			03/28/13	41.52	39.67	
			06/27/13	41.98	40.13	
	Surface (LSD)	Land Point Surface Elevation (LSD) (MP)	Land Point Surface Elevation Length Of (LSD) (MP) Riser (L)	Land Surface (LSD) Elevation (MP) Length Of Riser (L) Monitoring 5,622.38 5,624.23 1.85 05/02/07 08/14/07 10/10/07 03/26/08 06/24/08 06/24/08 06/24/08 08/26/08 10/14/08 03/03/09 06/24/09 09/10/09 12/11/09 03/11/10 05/11/10 05/11/10 05/11/10 05/11/10 05/11/10 05/11/10 09/29/10 12/21/10 02/28/11 06/21/11 09/20/11 12/21/11 03/27/12 06/28/12 09/27/12 12/28/12 09/27/12 12/28/12 03/28/13	Land Surface (LSD) Elevation (MP) Length Of Riser (L) Date Of Monitoring (blw.MP) 5,622.38 5,624.23 1.85 10/10/07 35.70 08/14/07 37.74 10/10/07 37.55 03/26/08 36.47 06/24/08 36.64 08/26/08 36.88 10/14/08 37.39 03/03/09 38.06 06/24/09 38.49 09/10/09 38.49 09/10/09 38.49 09/10/09 38.46 03/11/10 38.35 05/11/10 37.88 09/29/10 38.55 12/21/10 39.14 02/28/11 39.58 06/21/11 39.47 09/20/11 39.91 12/21/11 40.01 03/27/12 47.16 06/28/12 47.18 09/27/12 47.09 12/28/12 47.13 09/28/13 41.52	Land Surface (LSD) Point (LSD) Length Of (LSD) Date Of (LSD) Water (LSD) Water (LSD) User (LSD)

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,618.09	5,619.94	1.85				102.5
5,529.66				08/23/02	90.28	88.43	
5,530.66				09/11/02	89.28	87.43	
5,529.10				10/23/02	90.84	88.99	
5,530.58				11/22/02	89.36	87.51	
5,530.61				12/03/02	89.33	87.48	
5,529.74				01/09/03	90.20	88.35	
5,531.03				02/12/03	88.91	87.06	
5,531.82				03/26/03	88.12	86.27	
5,524.63				04/02/03	95.31	93.46	
5,531.54				05/01/03	88.40	86.55	
5,538.46				06/09/03	81.48	79.63	
5,539.38				07/07/03	80.56	78.71	
5,540.72				08/04/03	79.22	77.37	
5,541.25				09/11/03	78.69	76.84	
5,541.34				10/02/03	78.60	76.75	
5,541.69				11/07/03	78.25	76.40	
5,541.91				12/03/03	78.03	76.18	
5,542.44				01/15/04	77.50	75.65	
5,542.47				02/10/04	77.47	75.62	
5,542.84				03/28/04	77.10	75.25	
5,543.08				04/12/04	76.86	75.01	
5,543.34				05/13/04	76.60	74.75	
5,543.40				06/18/04	76.54	74.69	
5,544.06				07/28/04	75.88	74.03	
5,544.61				08/30/04	75.33	73.48	
5,545.23				09/16/04	74.71	72.86	
5,546.20				10/11/04	73.74	71.89	
5,547.43				11/16/04	72.51	70.66	
5,548.96				12/22/04	70.98	69.13	
5,549.02				01/18/05	70.92	69.07	
5,550.66				02/28/05	69.28	67.43	
5,551.26				03/15/05	68.68	66.83	
5,552.23				04/26/05	67.71	65.86	
5,552.87				05/24/05	67.07	65.22	
5,553.42				06/30/05	66.52	64.67	
5,554.00				07/29/05	65.94	64.09	
5,555.21				09/12/05	64.73	62.88	
5,558.13				12/07/05	61.81	59.96	
5,562.93				03/08/06	57.01	55.16	
5,564.39				06/13/06	55.55	53.70	
5,562.09				07/18/06	57.85	56.00	
5,565.49				11/07/06	54.45	52.60	
5571.08				02/27/07	48.86	47.01	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,618.09	5,619.94	1.85				102.5
5,570.63				05/02/07	49.31	47.46	
5,565.24				08/14/07	54.70	52.85	
5,565.83				10/10/07	54.11	52.26	
5,569.29				03/26/08	50.65	48.80	
5,570.00				06/24/08	49.94	48.09	
5,570.41				08/26/08	49.53	47.68	
5,570.64				10/14/08	49.30	47.45	
5,570.43				03/03/09	49.51	47.66	
5,570.56				06/24/09	49.38	47.53	
5,570.42				09/10/09	49.52	47.67	
5,571.15				12/11/09	48.79	46.94	
5,572.01				03/11/10	47.93	46.08	
5,572.88				05/11/10	47.06	45.21	
5,573.17				09/29/10	46.77	44.92	
5,573.14				12/21/10	46.80	44.95	
5,573.10				02/28/11	46.84	44.99	
5,573.75				06/21/11	46.19	44.34	
5,573.63				09/20/11	46.31	44.46	
5,573.94				12/21/11	46.00	44.15	
5,572.79				03/27/12	47.15	45.30	
5,572.77				06/28/12	47.17	45.32	
5,573.04				09/27/12	46.90	45.05	
5,572.79				12/28/12	47.15	45.30	
5,573.03				03/28/13	46.91	45.06	
5,572.44				06/27/13	47.50	45.65	
5,573.46				09/27/13	46.48	44.63	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,610.92	5,612.77	1.85				93
5,518.90				08/23/02	93.87	92.02	
5,519.28				09/11/02	93.49	91.64	
5,519.95				10/23/02	92.82	90.97	
5,520.32				11/22/02	92.45	90.60	
5,520.42				12/03/02	92.35	90.50	
5,520.70				01/09/03	92.07	90.22	
5,520.89				02/12/03	91.88	90.03	
5,521.12				03/26/03	91.65	89.80	
5,521.12				04/02/03	91.65	89.80	
5,521.24				05/01/03	91.53	89.68	
5,521.34				06/09/03	91.43	89.58	
5,521.36				07/07/03	91.41	89.56	
5,521.35				08/04/03	91.42	89.57	
5,521.30				09/11/03	91.47	89.62	
5,521.35				10/02/03	91.42	89.57	
5,521.36				11/07/03	91.41	89.56	
5,521.16				12/03/03	91.61	89.76	
5,521.29				01/15/04	91.48	89.63	
5,521.36				02/10/04	91.41	89.56	
5,521.46				03/28/04	91.31	89.46	
5,521.54				04/12/04	91.23	89.38	
5,521.59				05/13/04	91.18	89.33	
5,521.69				06/18/04	91.08	89.23	
5,521.71				07/28/04	91.06	89.21	
5,521.76				08/30/04	91.01	89.16	
5,521.77				09/16/04	91.00	89.15	
5,521.79				10/11/04	90.98	89.13	
5,521.80				11/16/04	90.97	89.12	
5,521.82				12/22/04	90.95	89.10	
5,521.82				01/18/05	90.95	89.10	
5,521.86				02/28/05	90.91	89.06	
5,521.85				03/15/05	90.92	89.07	
5,521.91				04/26/05	90.86	89.01	
5,521.93				05/24/05	90.84	88.99	
5,521.94				06/30/05	90.83	88.98	
5,521.84				07/29/05	90.93	89.08	
5,521.99				09/12/05	90.78	88.93	
5,522.04				12/07/05	90.73	88.88	
5,522.05				03/08/06	90.72	88.87	
5,522.27				06/13/06	90.50	88.65	
5,521.92				07/18/06	90.85	89.00	
5,520.17				11/07/06	92.60	90.75	
5522.24				02/27/07	90.53	88.68	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,610.92	5,612.77	1.85				93
5,522.47				05/02/07	90.30	88.45	
5,520.74				08/14/07	92.03	90.18	
5,518.13				10/10/07	94.64	92.79	
5,522.85				03/26/08	89.92	88.07	
5,522.91				06/24/08	89.86	88.01	
5,523.01				08/26/08	89.76	87.91	
5,522.96				10/14/08	89.81	87.96	
5,523.20				03/03/09	89.57	87.72	
5,523.33				06/24/09	89.44	87.59	
5,523.47				09/10/09	89.30	87.45	
5,523.54				12/11/09	89.23	87.38	
5,522.98				03/11/10	89.79	87.94	
5,524.01				05/11/10	88.76	86.91	
5,524.37				09/29/10	88.40	86.55	
5,524.62				12/21/10	88.15	86.30	
5,524.78				02/28/11	87.99	86.14	
5,525.23				06/21/11	87.54	85.69	
5,525.45				09/20/11	87.32	85.47	
5,525.72				12/21/11	87.05	85.20	
5,525.88				03/27/12	86.89	85.04	
5,525.97				06/28/12	86.80	84.95	
5,526.32				09/27/12	86.45	84.60	
5,525.88				12/28/12	86.89	85.04	
5,526.91				03/28/13	85.86	84.01	
5,526.99				06/27/13	85.78	83.93	
5,527.68				09/27/13	85.09	83.24	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,624.15	5,625.45	1.30				121.33
5,574.75				08/23/02	50.70	49.40	
5,574.97				09/11/02	50.48	49.18	
5,575.10				10/23/02	50.35	49.05	
5,574.99				11/22/02	50.46	49.16	
5,575.28				12/03/02	50.17	48.87	
5,575.41				01/09/03	50.04	48.74	
5,575.43				02/12/03	50.02	48.72	
5,575.63				03/26/03	49.82	48.52	
5,575.91				04/02/03	49.54	48.24	
5,575.81				05/01/03	49.64	48.34	
5,572.36				06/09/03	53.09	51.79	
5,570.70				07/07/03	54.75	53.45	
5,570.29				08/04/03	55.16	53.86	
5,560.94				09/11/03	64.51	63.21	
5,560.63				10/02/03	64.82	63.52	
5,560.56				11/07/03	64.89	63.59	
5,564.77				12/03/03	60.68	59.38	
5,570.89				01/15/04	54.56	53.26	
5,572.55				02/10/04	52.90	51.60	
5,574.25				03/28/04	51.20	49.90	
5,574.77				04/12/04	50.68	49.38	
5,575.53				05/13/04	49.92	48.62	
5,575.59				06/18/04	49.86	48.56	
5,576.82				07/28/04	48.63	47.33	
5,527.47				09/16/04	97.98	96.68	
5,553.97				11/16/04	71.48	70.18	
5,562.33				12/22/04	63.12	61.82	
5,550.00				01/18/05	75.45	74.15	
5,560.02				04/26/05	65.43	64.13	
5,546.11				05/24/05	79.34	78.04	
5,556.71				06/30/05	68.74	67.44	
5,554.95				07/29/05	70.50	69.20	
5,555.48				09/12/05	69.97	68.67	
5,551.09				12/07/05	74.36	73.06	
5,552.85				03/08/06	72.60	71.30	
5,554.30				06/13/06	71.15	69.85	
5,554.87				07/18/06	70.58	69.28	
5,550.88				11/07/06 02/27/07	74.57	73.27	
5558.77 5.548.54					66.68	65.38	
5,548.54				05/02/07	76.91	75.61	
5,551.33				10/10/07	74.12	72.82	
5,545.56				03/26/08	79.89	78.59	
5,545.56				06/25/08	79.89	78.59	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,624.15	5,625.45	1.30				121.33
5,545.82				08/26/08	79.63	78.33	
5,545.64				10/14/08	79.81	78.51	
5,544.45				03/03/09	81.00	79.70	
5,545.32				06/24/09	80.13	78.83	
5,544.61				09/10/09	80.84	79.54	
5,549.33				12/11/09	76.12	74.82	
5,543.78				03/11/10	81.67	80.37	
5,545.61				05/11/10	79.84	78.54	
5,547.43				09/29/10	78.02	76.72	
5,544.14				12/21/10	81.31	80.01	
5,546.77				02/28/11	78.68	77.38	
5,537.60				06/21/11	87.85	86.55	
5,551.46				09/20/11	73.99	72.69	
5,549.12				12/21/11	76.33	75.03	
5,557.30				03/27/12	68.15	66.85	
5,557.38				06/28/12	68.07	66.77	
5,550.86				09/27/12	74.59	73.29	
5,557.30				12/28/12	68.15	66.85	
5,565.37				03/28/13	60.08	58.78	
5,563.55				06/27/13	61.90	60.60	
5,560.12				09/27/13	65.33	64.03	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,622.19	5,624.02	1.83				142
5,562.91				08/23/02	61.11	59.28	
5,563.45				09/11/02	60.57	58.74	
5,563.75				10/23/02	60.27	58.44	
5,563.68				11/22/02	60.34	58.51	
5,563.68				12/03/02	60.34	58.51	
5,564.16				01/09/03	59.86	58.03	
5,564.25				02/12/03	59.77	57.94	
5,564.53				03/26/03	59.49	57.66	
5,564.46				04/02/03	59.56	57.73	
5,564.79				05/01/03	59.23	57.40	
5,564.31				06/09/03	59.71	57.88	
5,563.29				07/07/03	60.73	58.90	
5,562.76				08/04/03	61.26	59.43	
5,561.73				09/11/03	62.29	60.46	
5,561.04				10/02/03	62.98	61.15	
5,560.39				11/07/03	63.63	61.80	
5,559.79				12/03/03	64.23	62.40	
5,561.02				01/15/04	63.00	61.17	
5,561.75				02/10/04	62.27	60.44	
5,562.98				03/28/04	61.04	59.21	
5,563.29				04/12/04	60.73	58.90	
5,564.03				05/13/04	59.99	58.16	
5,564.09				06/18/04	59.93	58.10	
5,565.08				07/28/04	58.94	57.11	
5,564.56				08/30/04	59.46	57.63	
5,563.55				09/16/04	60.47	58.64	
5,561.79				10/11/04	62.23	60.40	
5,560.38				11/16/04	63.64	61.81	
5,559.71				12/22/04	64.31	62.48	
5,559.14				01/18/05	64.88	63.05	
5,558.65				02/28/05	65.37	63.54	
5,558.54				03/15/05	65.48	63.65	
5,558.22				04/26/05	65.80	63.97	
5,558.54				05/24/05	65.48	63.65	
5,559.24				06/30/05	64.78	62.95	
5,559.38				07/29/05	64.64	62.81	
5,559.23				09/12/05	64.79	62.96	
5,557.67				12/07/05	66.35	64.52	
5,557.92				03/08/06	66.10	64.27	
5,558.47				06/13/06	65.55	63.72	
5,558.42				07/18/06	65.60	63.77	
5,558.09				11/07/06	65.93	64.10	
5557.34				02/27/07	66.68	64.85	

		4 4 1110	e iviesa ivili	II - AACH I AA	4-10		
					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,622.19	5,624.02	1.83				142
5,547.11				05/02/07	76.91	75.08	
5,558.52				08/14/07	65.50	63.67	
5,559.02				10/10/07	65.00	63.17	
5,561.04				03/26/08	62.98	61.15	
5,560.06				06/24/08	63.96	62.13	
5,559.32				08/26/08	64.70	62.87	
5,558.89				10/14/08	65.13	63.30	
5,558.40				03/03/09	65.62	63.79	
5,558.32				06/24/09	65.70	63.87	
5,558.03				09/10/09	65.99	64.16	
5,558.81				12/11/09	65.21	63.38	
5,559.80				03/11/10	64.22	62.39	
5,559.85				05/11/10	64.17	62.34	
5,560.54				09/29/10	63.48	61.65	
5,558.65				12/21/10	65.37	63.54	
5,559.26				02/28/11	64.76	62.93	
5,560.48				06/21/11	63.54	61.71	
5,561.52				09/20/11	62.50	60.67	
5,562.95				12/21/11	61.07	59.24	
5,563.76				03/27/12	60.26	58.43	
5,563.90				06/28/12	60.12	58.29	
5,564.65				09/27/12	59.37	57.54	
5,563.77				12/28/12	60.25	58.42	
5,564.74				03/28/13	59.28	57.45	
5,563.66				06/27/13	60.36	58.53	
5,562.27				09/27/13	61.75	59.92	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,623.41	5,625.24	1.83				130.6
5,542.17				08/23/02	83.07	81.24	
5,542.39				09/11/02	82.85	81.02	
5,542.61				10/23/02	82.63	80.80	
5,542.49				11/22/02	82.75	80.92	
5,542.82				12/03/02	82.42	80.59	
5,543.03				01/09/03	82.21	80.38	
5,543.04				02/12/03	82.20	80.37	
5,543.41				03/26/03	81.83	80.00	
5,543.69				04/02/03	81.55	79.72	
5,543.77				05/01/03	81.47	79.64	
5,544.01				06/09/03	81.23	79.40	
5,544.05				07/07/03	81.19	79.36	
5,543.99				08/04/03	81.25	79.42	
5,544.17				09/11/03	81.07	79.24	
5,544.06				10/02/03	81.18	79.35	
5,544.03				11/07/03	81.21	79.38	
5,543.94				12/03/03	81.30	79.47	
5,543.98				01/15/04	81.26	79.43	
5,543.85				02/10/04	81.39	79.56	
5,544.05				03/28/04	81.19	79.36	
5,544.33				04/12/04	80.91	79.08	
5,544.55				05/13/04	80.69	78.86	
5,544.59				06/18/04	80.65	78.82	
5,545.08				07/28/04	80.16	78.33	
5,545.26				08/30/04	79.98	78.15	
5,545.48				09/16/04	79.76	77.93	
5,545.61				10/11/04	79.63	77.80	
5,545.46				11/16/04	79.78	77.95	
5,545.66				12/22/04	79.58	77.75	
5,545.33				01/18/05	79.91	78.08	
5,545.51				02/28/05	79.73	77.90	
5,545.57				03/15/05	79.67	77.84	
5,545.46				04/26/05	79.78	77.95	
5,545.45				05/24/05	79.79	77.96	
5,545.33				06/30/05	79.91	78.08	
5,545.16				07/29/05	80.08	78.25	
5,545.54				09/12/05	79.70	77.87	
5,545.77				12/07/05	79.47	77.64	
5,546.09				03/08/06	79.15	77.32	
5,545.94				06/13/06	79.30	77.47	
5,545.94				07/18/06	79.30	77.47	
5,546.24				11/07/06	79.00	77.17	
5546.81				02/27/07	78.43	76.6	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,623.41	5,625.24	1.83				130.6
5546.56				05/02/07	78.68	76.85	
5546.81				08/15/07	78.43	76.6	
5546.96				10/10/07	78.28	76.45	
5547.9				03/26/08	77.34	75.51	
5548.08				06/25/08	77.16	75.33	
5548.42				08/26/08	76.82	74.99	
5548.05				10/14/08	77.19	75.36	
5548.29				03/03/09	76.95	75.12	
5548.09				06/24/09	77.15	75.32	
5547.79				09/10/09	77.45	75.62	
5548.09				12/11/09	77.15	75.32	
5,548.50				03/11/10	76.74	74.91	
5,548.89				05/11/10	76.35	74.52	
5,548.83				09/29/10	76.41	74.58	
5,548.97				12/21/10	76.27	74.44	
5,548.68				02/28/11	76.56	74.73	
5,549.33				06/21/11	75.91	74.08	
5,549.19				09/20/11	76.05	74.22	
5,550.06				12/21/11	75.18	73.35	
5,550.31				03/27/12	74.93	73.10	
5,550.32				06/28/12	74.92	73.09	
5,550.88				09/27/12	74.36	72.53	
5,550.29				12/28/12	74.95	73.12	
5,551.54				03/28/13	73.70	71.87	
5,550.34				06/27/13	74.90	73.07	
5,551.35				09/27/13	73.89	72.06	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,639.13	5,641.28	2.15				137.5
5,585.13				08/23/02	56.15	54.00	
5,585.41				09/11/02	55.87	53.72	
5,585.47				10/23/02	55.81	53.66	
5,585.40				11/22/02	55.88	53.73	
5,585.68				12/03/02	55.60	53.45	
5,585.90				01/09/03	55.38	53.23	
5,590.79				02/12/03	50.49	48.34	
5,586.18				03/26/03	55.10	52.95	
5,586.36				04/02/03	54.92	52.77	
5,586.24				05/01/03	55.04	52.89	
5,584.93				06/09/03	56.35	54.20	
5,584.46				07/07/03	56.82	54.67	
5,584.55				08/04/03	56.73	54.58	
5,584.01				09/11/03	57.27	55.12	
5,583.67				10/02/03	57.61	55.46	
5,583.50				11/07/03	57.78	55.63	
5,584.08				12/03/03	57.20	55.05	
5,585.45				01/15/04	55.83	53.68	
5,585.66				02/10/04	55.62	53.47	
5,586.13				03/28/04	55.15	53.00	
5,586.39				04/12/04	54.89	52.74	
5,586.66				05/13/04	54.62	52.47	
5,586.77				06/18/04	54.51	52.36	
5,587.35				07/28/04	53.93	51.78	
5,586.34				08/30/04	54.94	52.79	
5,585.85				09/16/04	55.43	53.28	
5,585.22				10/11/04	56.06	53.91	
5,584.70				11/16/04	56.58	54.43	
5,584.81				12/22/04	56.47	54.32	
5,584.68				01/18/05	56.60	54.45	
5,585.02				02/28/05	56.26	54.11	
5,585.25				03/15/05	56.03	53.88	
5,586.31				04/26/05	54.97	52.82	
5,586.97				05/24/05	54.31	52.16	
5,586.58				06/30/05	54.70	52.55	
5,586.10				07/29/05	55.18	53.03	
5,586.05				09/12/05	55.23	53.08	
5,585.86				12/07/05	55.42	53.27	
5,587.13				03/08/06	54.15	52.00	
5,585.93				06/13/06	55.35	53.20	
5,585.40				07/18/06	55.88	53.73	
5,585.38				11/07/06	55.90	53.75	
5585.83				02/27/07	55.45	53.30	

		VV IIILC	TVICSA TVIII	ii - vvcii i v	1.4-10		
					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of		Water	Water	Depth Of
(WL)	(LSD)	(MP)		Monitoring	(blw.MP)	(blw.LSD)	Well
	5,639.13	5,641.28	2.15				137.5
5585.15				05/02/07	56.13	53.98	
5586.47				06/24/08	54.81	52.66	
5586.3				08/26/08	54.98	52.83	
5585.21				10/14/08	56.07	53.92	
5584.47				03/03/09	56.81	54.66	
5584.35				06/24/09	56.93	54.78	
5583.88				09/10/09	57.4	55.25	
5584.43				12/11/09	56.85	54.70	
5,585.26				03/11/10	56.02	53.87	
5,584.17				05/11/10	57.11	54.96	
5,583.61				09/29/10	57.67	55.52	
5,604.29				12/21/10	36.99	34.84	
5,583.56				02/28/11	57.72	55.57	
5,584.73				06/21/11	56.55	54.40	
5,584.71				09/20/11	56.57	54.42	
5,585.03				12/21/11	56.25	54.10	
5,584.63				03/27/12	56.65	54.50	
5,584.67				06/28/12	56.61	54.46	
5,583.98				09/27/12	57.30	55.15	
5,584.65				12/28/12	56.63	54.48	
5,582.88				03/28/13	58.40	56.25	
5,584.63				06/27/13	56.65	54.50	
5,581.38				09/27/13	59.90	57.75	

Water Land (WID) Company of Measures (Land) Measured (Land) Measured (Land) Total Depth to Water (blw.MP) Total Depth of Wall Total Depth of Wal						Total or		
Care			Measuring			Measured		
Well S.629.53 S.631.39 S.68 S.823/02 S.631.39 S.681.39 S.681.39 S.681.39 S.681.39 S.681.39 S.682.302 S.682.302.302.302 S.682.302 S.682.302 S.682.302 S.682.302 S.6						-	_	
5,629.53 5,631.39 1.86 121.33 5,581.84 09/11/02 49.25 47.39 5,582.06 10/23/02 49.33 47.47 5,582.07 11/22/02 49.33 47.47 5,582.16 12/03/02 49.23 47.46 5,582.28 01/09/03 49.11 47.25 5,582.29 02/21/03 49.10 47.24 5,582.82 04/02/03 48.57 46.71 5,584.47 05/01/03 82.92 81.06 5,564.76 06/09/03 66.63 64.77 5,562.53 07/07/03 68.86 67.00 5,564.10 08/04/03 65.38 63.52 5,555.16 09/16/04 76.23 74.37 5,548.80 10/11/04 81.59 82.19 5,548.77 01/18/04 85.35 83.49 5,549.80 10/11/04 81.59 82.19 5,548.04 11/16/04 85.35 83.49 5,547.34 12/22/04				· -				
5,581.88 08/23/02 49.51 47.65 5,582.14 09/11/02 49.25 47.39 5,582.06 10/23/02 49.33 47.47 5,582.07 11/22/02 49.32 47.46 5,582.16 12/03/02 49.23 47.37 5,582.28 01/09/03 49.11 47.25 5,582.29 02/21/03 49.10 47.24 5,582.29 02/21/03 49.10 47.24 5,582.82 04/02/03 48.57 46.71 5,582.82 04/02/03 84.57 46.71 5,548.47 05/01/03 86.63 64.77 5,562.53 07/07/03 66.63 64.77 5,562.53 07/07/03 68.86 67.00 5,555.16 08/30/04 65.38 63.52 5,549.80 10/11/04 81.59 79.73 5,546.04 11/16/04 81.59 79.73 5,546.04 11/16/04 81.59 82.19 5,543.37 01/18/05	(WL)				Monitoring	(blw.MP)	(blw.LSD)	
5,582,14 09/11/02 49,25 47,39 5,582,06 10/23/02 49,33 47,47 5,582,07 11/22/02 49,32 47,46 5,582,16 12/03/02 49,23 47,37 5,582,28 01/09/03 49,11 47,25 5,582,29 02/21/03 48,65 46,79 5,582,82 04/02/03 48,57 46,71 5,582,82 04/02/03 48,57 46,71 5,544,76 06/09/03 66,63 64,77 5,562,53 07/07/03 68,86 67,00 5,564,76 06/09/03 67,29 65,43 5,564,10 08/30/04 65,38 63,52 5,564,10 08/30/04 65,38 63,52 5,549,80 10/11/04 81,59 79,73 5,540,04 11/16/04 85,35 83,49 5,547,34 12/22/04 84,05 82,19 5,548,77 01/18/05 82,62 80,76 5,551,18 02/28/05 80,21 78,35 5,562,63 04/26/05 68,76		5,629.53	5,631.39	1.86				121.33
5,582.06 10/23/02 49.33 47.47 5,582.07 11/22/02 49.32 47.46 5,582.16 12/03/02 49.23 47.37 5,582.28 01/09/03 49.11 47.25 5,582.29 02/21/03 49.10 47.24 5,582.82 04/02/03 48.57 46.71 5,548.47 05/01/03 82.92 81.06 5,564.76 06/09/03 66.63 64.77 5,562.53 07/07/03 68.86 67.00 5,564.10 08/04/03 67.29 65.43 5,564.10 08/30/04 65.38 63.52 - 5,549.80 10/11/04 81.59 79.73 5,547.34 12/22/04 84.05 82.19 5,547.34 12/22/04 84.05 82.19 5,548.77 01/18/05 82.62 80.76 5,555.81 03/15/05 74.58 72.72 5,562.63 04/26/05 68.76 66.90 5,573.42 05/24/05 77.39 75.53 5,555.94 07/29/05 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
5,582,07 11/22/02 49.32 47.46 5,582,16 12/03/02 49.23 47.37 5,582,28 01/09/03 49.10 47.24 5,582,29 02/21/03 49.10 47.24 5,582,74 03/26/03 48.65 46.79 5,582,82 04/02/03 48.57 46.71 5,548,47 05/01/03 82.92 81.06 5,564,76 06/09/03 66.63 64.77 5,562,53 07/07/03 68.86 67.00 5,564,10 08/04/03 67.29 65.43 5,566,01 08/30/04 65.38 63.52 5,555,16 09/16/04 76.23 74.37 5,549,80 10/11/04 81.59 79.73 5,540,04 11/16/04 85.35 83.49 5,547,34 12/22/04 84.05 82.19 5,551,18 02/28/05 80.21 78.35 5,562,63 04/26/05 87.97 56.11 5,552,94 07/29/05 78.45 76.59 5,554,00 09/12/05 77.39								
5,582,16 12/03/02 49.23 47.37 5,582,28 01/09/03 49.11 47.24 5,582,74 03/26/03 48.65 46.79 5,582,82 04/02/03 48.57 46.71 5,548,47 05/01/03 82.92 81.06 5,564,76 06/09/03 66.63 64.77 5,562,53 07/07/03 68.86 67.00 5,564,10 08/04/03 67.29 65.43 5,566,01 08/30/04 65.38 63.52 5,555,16 09/16/04 76.23 74.37 5,549,80 10/11/04 81.59 79.73 5,540,04 11/16/04 85.35 83.49 5,547,34 12/22/04 84.05 82.19 5,551,18 02/28/05 80.21 78.35 5,556,81 03/15/05 74.58 72.72 5,552,94 07/29/05 78.45 76.59 5,552,94 07/29/05 78.45 76.59 5,554,00 09/12/05 77.39 75.53 5,545,74 06/13/06 85.65								
5,582.28 01/09/03 49.11 47.25 5,582.29 02/21/03 48.65 46.79 5,582.82 04/02/03 48.57 46.71 5,582.82 04/02/03 48.57 46.71 5,548.47 05/01/03 82.92 81.06 5,564.76 06/09/03 66.63 64.77 5,562.53 07/07/03 68.86 67.00 5,564.10 08/04/03 67.29 65.43 5,566.01 08/30/04 65.38 63.52 5,549.80 10/11/04 81.59 79.73 5,540.40 11/16/04 81.59 79.73 5,548.77 01/18/05 82.62 80.76 5,551.18 02/28/05 80.21 78.35 5,552.63 04/26/05 68.76 66.90 5,573.42 05/24/05 79.7 56.11 5,552.94 07/29/05 78.45 76.59 5,554.00 09/12/05 77.39 75.53 5,555.98 12/07/05 75.41 73.55 5,555.99 12/27/07 87.80<								
5,582,29 02/21/03 49.10 47.24 5,582,74 03/26/03 48.65 46.79 5,582,82 04/02/03 48.57 46.71 5,548,47 05/01/03 82.92 81.06 5,564,76 06/09/03 66.63 64.77 5,562,53 07/07/03 68.86 67.00 5,564,10 08/04/03 67.29 65.43 5,566.01 08/30/04 65.38 63.52 5,555,16 09/16/04 76.23 74.37 5,549.80 10/11/04 81.59 79.73 5,540.04 11/16/04 85.35 83.49 5,547.34 12/22/04 84.05 82.19 5,548.77 01/18/05 82.62 80.76 5,551.18 02/28/05 80.21 78.35 5,556.81 03/15/05 74.58 72.72 5,562.63 04/26/05 68.76 66.90 5,573.42 05/24/05 57.97 56.11 5,552.94 07/29/05								
5,582,74 03/26/03 48.65 46.79 5,582,82 04/02/03 48.57 46.71 5,548,47 05/01/03 82.92 81.06 5,564,76 06/09/03 66.63 64.77 5,562,53 07/07/03 68.86 67.00 5,554.10 08/30/04 65.38 63.52 - 5,566.01 08/30/04 65.38 63.52 - 5,555.16 09/16/04 76.23 74.37 - 5,549.80 10/11/04 81.59 79.73 - 5,547.34 12/22/04 84.05 82.19 - 5,548.77 01/18/05 82.62 80.76 - 5,551.18 02/28/05 80.21 78.35 5,562.63 04/26/05 68.76 66.90 5,573.42 05/24/05 57.97 56.11 5,552.94 07/29/05 78.45 76.59 5,554.00 09/12/05 77.39 75.53 5,554.00 09/12/05 77.39 77.53 5,545.74 06/13/06 85.65								
5,582.82 04/02/03 48.57 46.71 5,548.47 05/01/03 82.92 81.06 5,564.76 06/09/03 66.63 64.77 5,562.53 07/07/03 68.86 67.00 5,564.10 08/04/03 67.29 65.43 5,566.01 08/30/04 65.38 63.52 5,555.16 09/16/04 76.23 74.37 5,549.80 10/11/04 81.59 79.73 5,546.04 11/16/04 85.35 83.49 5,547.34 12/22/04 84.05 82.19 5,548.77 01/18/05 82.62 80.76 5,551.18 02/28/05 80.21 78.35 5,562.63 04/26/05 68.76 66.90 5,573.42 05/24/05 57.97 56.11 5,552.94 07/29/05 78.45 76.59 5,555.98 12/07/05 75.41 73.55 5,545.74 06/13/06 85.65 83.79 5,544.06 07/18/06								
5,548.47 05/01/03 82.92 81.06 5,564.76 06/09/03 66.63 64.77 5,562.53 07/07/03 68.86 67.00 5,564.10 08/04/03 67.29 65.43 5,566.01 08/30/04 65.38 63.52 5,555.16 09/16/04 76.23 74.37 5,549.80 10/11/04 81.59 79.73 5,546.04 11/16/04 85.35 83.49 5,547.34 12/22/04 84.05 82.19 5,548.77 01/18/05 82.62 80.76 5,551.18 02/28/05 80.21 78.35 5,562.63 04/26/05 68.76 66.90 5,573.42 05/24/05 57.97 56.11 5,552.94 07/29/05 78.45 76.59 5,555.98 12/07/05 75.41 73.55 5,554.74 06/13/06 85.65 83.79 5,545.74 06/13/06 85.65 83.79 5,545.74 06/13/06								
5,564.76 06/09/03 66.63 64.77 5,562.53 07/07/03 68.86 67.00 5,564.10 08/04/03 67.29 65.43 5,566.01 08/30/04 65.38 63.52 5,555.16 09/16/04 76.23 74.37 5,49.80 10/11/04 81.59 79.73 5,546.04 11/16/04 85.35 83.49 5,547.34 12/22/04 84.05 82.19 5,548.77 01/18/05 82.62 80.76 5,551.18 02/28/05 80.21 78.35 5,556.81 03/15/05 74.58 72.72 5,562.63 04/26/05 68.76 66.90 5,573.42 05/24/05 57.97 56.11 5,552.94 07/29/05 78.45 76.59 5,554.00 09/12/05 77.39 75.53 5,552.00 03/08/06 79.39 77.53 5,545.74 06/13/06 85.65 83.79 5,544.81 11/07/06<	5,582.82					48.57	46.71	
5,562.53 07/07/03 68.86 67.00 5,564.10 08/04/03 67.29 65.43 5,566.01 08/30/04 65.38 63.52 5,555.16 09/16/04 76.23 74.37 5,549.80 10/11/04 81.59 79.73 5,546.04 11/16/04 85.35 83.49 5,547.34 12/22/04 84.05 82.19 5,548.77 01/18/05 82.62 80.76 5,551.18 02/28/05 80.21 78.35 5,556.81 03/15/05 74.58 72.72 5,562.63 04/26/05 68.76 66.90 5,573.42 05/24/05 57.97 56.11 5,555.94 07/29/05 78.45 76.59 5,555.98 12/07/05 75.41 73.55 5,545.74 06/13/06 85.65 83.79 5,544.06 07/18/06 87.33 85.47 5,548.81 11/07/06 82.58 80.72 5543.59 02/27/07 87.80 85.94 5559.73 10/10/07 71.66 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
5,564.10 08/04/03 67.29 65.43 5,566.01 08/30/04 65.38 63.52 5,555.16 09/16/04 76.23 74.37 5,549.80 10/11/04 81.59 79.73 5,546.04 11/16/04 85.35 83.49 5,547.34 12/22/04 84.05 82.19 5,548.77 01/18/05 82.62 80.76 5,551.18 02/28/05 80.21 78.35 5,562.63 04/26/05 68.76 66.90 5,573.42 05/24/05 57.97 56.11 5,552.94 07/29/05 77.39 75.53 5,555.98 12/07/05 75.41 73.55 5,554.00 09/12/05 77.39 75.53 5,554.00 09/12/05 77.39 75.53 5,554.00 09/12/05 77.39 75.53 5,554.00 09/12/05 77.39 75.53 5,544.00 07/18/06 85.65 83.79 5,545.74 06/13/06 87.33 85.47 5,548.81 11/07/06 82.58	5,564.76							
5,566.01 08/30/04 65.38 63.52 5,555.16 09/16/04 76.23 74.37 5,549.80 10/11/04 81.59 79.73 5,549.80 11/16/04 85.35 83.49 5,547.34 12/22/04 84.05 82.19 5,548.77 01/18/05 82.62 80.76 5,551.18 02/28/05 80.21 78.35 5,556.81 03/15/05 74.58 72.72 5,562.63 04/26/05 68.76 66.90 5,573.42 05/24/05 57.97 56.11 5,552.94 07/29/05 78.45 76.59 5,555.98 12/07/05 77.39 75.53 5,555.98 12/07/05 75.41 73.55 5,54.00 09/12/05 77.39 77.53 5,545.74 06/13/06 85.65 83.79 5,544.06 07/18/06 87.33 85.47 5,548.81 11/07/06 82.58 80.72 5543.59 02/27/07 87.80 85.94 5559.73 08/15/07 72.42 <td>5,562.53</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	5,562.53							
5,555.16 09/16/04 76.23 74.37 5,549.80 10/11/04 81.59 79.73 5,546.04 11/16/04 85.35 83.49 5,547.34 12/22/04 84.05 82.19 5,548.77 01/18/05 82.62 80.76 5,551.18 02/28/05 80.21 78.35 5,556.81 03/15/05 74.58 72.72 5,662.63 04/26/05 68.76 66.90 5,573.42 05/24/05 57.97 56.11 5,552.94 07/29/05 78.45 76.59 5,554.00 09/12/05 77.39 75.53 5,552.00 03/08/06 79.39 77.53 5,545.74 06/13/06 87.33 85.47 5,544.06 07/18/06 87.33 85.47 5,548.81 11/07/06 82.58 80.72 5543.59 02/27/07 87.80 85.94 5558.97 08/15/07 72.42 70.56 5559.73 10/10/07 71.66 69.8 5556.926 03/26/08 62.13 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
5,549.80 10/11/04 81.59 79.73 5,546.04 11/16/04 85.35 83.49 5,547.34 12/22/04 84.05 82.19 5,548.77 01/18/05 82.62 80.76 5,551.18 02/28/05 80.21 78.35 5,556.81 03/15/05 74.58 72.72 5,562.63 04/26/05 68.76 66.90 5,573.42 05/24/05 57.97 56.11 5,552.94 07/29/05 78.45 76.59 5,554.00 09/12/05 77.39 75.53 5,552.00 03/08/06 79.39 77.53 5,545.74 06/13/06 85.65 83.79 5,544.06 07/18/06 87.33 85.47 5,548.81 11/07/06 82.58 80.72 5543.59 02/27/07 87.80 85.94 5544.55 05/02/07 86.84 84.98 5559.73 10/10/07 71.66 69.8 5559.73 10/10/07 71.66 69.8 5558.45 10/14/08 72.94	5,566.01							*
5,546.04 11/16/04 85.35 83.49 5,547.34 12/22/04 84.05 82.19 5,548.77 01/18/05 82.62 80.76 5,551.18 02/28/05 80.21 78.35 5,556.81 03/15/05 74.58 72.72 5,562.63 04/26/05 68.76 66.90 5,573.42 05/24/05 57.97 56.11 5,552.94 07/29/05 78.45 76.59 5,554.00 09/12/05 77.39 75.53 5,555.98 12/07/05 75.41 73.55 5,554.74 06/13/06 85.65 83.79 5,544.06 07/18/06 87.33 85.47 5,548.81 11/07/06 82.58 80.72 5543.59 02/27/07 87.80 85.94 5545.55 05/02/07 86.84 84.98 5558.97 08/15/07 72.42 70.56 5559.73 10/10/07 71.66 69.8 5556.26 03/26/08 62.13 60.27 5535.47 06/25/08 95.92					09/16/04			
5,547.34 12/22/04 84.05 82.19 5,548.77 01/18/05 82.62 80.76 5,551.18 02/28/05 80.21 78.35 5,556.81 03/15/05 74.58 72.72 5,562.63 04/26/05 68.76 66.90 5,573.42 05/24/05 57.97 56.11 5,552.94 07/29/05 78.45 76.59 5,554.00 09/12/05 77.39 75.53 5,555.98 12/07/05 75.41 73.55 5,552.00 03/08/06 79.39 75.53 5,545.74 06/13/06 85.65 83.79 5,544.06 07/18/06 87.33 85.47 5,548.81 11/07/06 82.58 80.72 5543.59 02/27/07 87.80 85.94 5544.55 05/02/07 86.84 84.98 5559.73 10/10/07 71.66 69.8 5559.73 10/10/07 71.66 69.8 5554.41 08/26/08 89.98 88.12 5536.9 03/03/09 94.49	5,549.80				10/11/04	81.59		
5,548.77 01/18/05 82.62 80.76 5,551.18 02/28/05 80.21 78.35 5,556.81 03/15/05 74.58 72.72 5,62.63 04/26/05 68.76 66.90 5,573.42 05/24/05 57.97 56.11 5,552.94 07/29/05 78.45 76.59 5,554.00 09/12/05 77.39 75.53 5,555.98 12/07/05 75.41 73.55 5,552.00 03/08/06 79.39 77.53 5,545.74 06/13/06 85.65 83.79 5,544.06 07/18/06 87.33 85.47 5,548.81 11/07/06 82.58 80.72 5543.59 02/27/07 87.80 85.94 5544.55 05/02/07 86.84 84.98 5558.97 08/15/07 72.42 70.56 5559.73 10/10/07 71.66 69.8 5569.26 03/26/08 62.13 60.27 5535.47 06/25/08 95.92 94.06 5541.41 08/26/08 89.98	5,546.04				11/16/04	85.35		
5,551.18 02/28/05 80.21 78.35 5,556.81 03/15/05 74.58 72.72 5,562.63 04/26/05 68.76 66.90 5,573.42 05/24/05 57.97 56.11 5,552.94 07/29/05 78.45 76.59 5,554.00 09/12/05 77.39 75.53 5,555.98 12/07/05 75.41 73.55 5,552.00 03/08/06 79.39 77.53 5,545.74 06/13/06 85.65 83.79 5,544.06 07/18/06 87.33 85.47 5,548.81 11/07/06 82.58 80.72 5543.59 02/27/07 87.80 85.94 5544.55 05/02/07 86.84 84.98 5558.97 08/15/07 72.42 70.56 5559.73 10/10/07 71.66 69.8 5569.26 03/26/08 62.13 60.27 5535.47 06/25/08 95.92 94.06 5558.45 10/14/08 72.94 71.08 5536.9 03/03/09 94.49	5,547.34				12/22/04	84.05	82.19	
5,556.81 03/15/05 74.58 72.72 5,562.63 04/26/05 68.76 66.90 5,573.42 05/24/05 57.97 56.11 5,552.94 07/29/05 78.45 76.59 5,554.00 09/12/05 77.39 75.53 5,555.98 12/07/05 75.41 73.55 5,552.00 03/08/06 79.39 77.53 5,545.74 06/13/06 85.65 83.79 5,544.06 07/18/06 87.33 85.47 5,548.81 11/07/06 82.58 80.72 5543.59 02/27/07 87.80 85.94 5544.55 05/02/07 86.84 84.98 5558.97 08/15/07 72.42 70.56 5559.73 10/10/07 71.66 69.8 5569.26 03/26/08 62.13 60.27 5535.47 06/25/08 95.92 94.06 5541.41 08/26/08 89.98 88.12 5558.45 10/14/08 72.94 71.08 5536.9 03/03/09 94.49	5,548.77				01/18/05	82.62	80.76	
5,562.63 04/26/05 68.76 66.90 5,573.42 05/24/05 57.97 56.11 5,552.94 07/29/05 78.45 76.59 5,554.00 09/12/05 77.39 75.53 5,555.98 12/07/05 75.41 73.55 5,552.00 03/08/06 79.39 77.53 5,545.74 06/13/06 85.65 83.79 5,544.06 07/18/06 87.33 85.47 5,548.81 11/07/06 82.58 80.72 5543.59 02/27/07 87.80 85.94 5544.55 05/02/07 86.84 84.98 5558.97 08/15/07 72.42 70.56 5559.73 10/10/07 71.66 69.8 5569.26 03/26/08 62.13 60.27 5535.47 06/25/08 95.92 94.06 5541.41 08/26/08 89.98 88.12 5558.45 10/14/08 72.94 71.08 5536.9 03/03/09 94.49 92.63 5547.76 06/24/09 83.63	5,551.18				02/28/05	80.21	78.35	
5,573.42 05/24/05 57.97 56.11 5,552.94 07/29/05 78.45 76.59 5,554.00 09/12/05 77.39 75.53 5,555.98 12/07/05 75.41 73.55 5,552.00 03/08/06 79.39 77.53 5,545.74 06/13/06 85.65 83.79 5,544.06 07/18/06 87.33 85.47 5,548.81 11/07/06 82.58 80.72 5543.59 02/27/07 87.80 85.94 5544.55 05/02/07 86.84 84.98 5558.97 08/15/07 72.42 70.56 5559.73 10/10/07 71.66 69.8 5569.26 03/26/08 62.13 60.27 5535.47 06/25/08 95.92 94.06 5541.41 08/26/08 89.98 88.12 5536.9 03/03/09 94.49 92.63 5547.76 06/24/09 83.63 81.77 5561.48 09/10/09 69.91 68.05 5548.14 12/11/09 83.25 <	5,556.81				03/15/05	74.58	72.72	
5,552.94 07/29/05 78.45 76.59 5,554.00 09/12/05 77.39 75.53 5,555.98 12/07/05 75.41 73.55 5,552.00 03/08/06 79.39 77.53 5,545.74 06/13/06 85.65 83.79 5,544.06 07/18/06 87.33 85.47 5,548.81 11/07/06 82.58 80.72 5543.59 02/27/07 87.80 85.94 5544.55 05/02/07 86.84 84.98 5558.97 08/15/07 72.42 70.56 5559.73 10/10/07 71.66 69.8 5569.26 03/26/08 62.13 60.27 5535.47 06/25/08 95.92 94.06 5541.41 08/26/08 89.98 88.12 5558.45 10/14/08 72.94 71.08 5536.9 03/03/09 94.49 92.63 5547.76 06/24/09 83.63 81.77 5561.48 09/10/09 69.91 68.05 5548.14 12/11/09 83.25 <t< td=""><td>5,562.63</td><td></td><td></td><td></td><td>04/26/05</td><td>68.76</td><td>66.90</td><td></td></t<>	5,562.63				04/26/05	68.76	66.90	
5,554.00 09/12/05 77.39 75.53 5,555.98 12/07/05 75.41 73.55 5,552.00 03/08/06 79.39 77.53 5,545.74 06/13/06 85.65 83.79 5,544.06 07/18/06 87.33 85.47 5,548.81 11/07/06 82.58 80.72 5543.59 02/27/07 87.80 85.94 5544.55 05/02/07 86.84 84.98 5558.97 08/15/07 72.42 70.56 5559.73 10/10/07 71.66 69.8 5569.26 03/26/08 62.13 60.27 5535.47 06/25/08 95.92 94.06 5541.41 08/26/08 89.98 88.12 5558.45 10/14/08 72.94 71.08 5536.9 03/03/09 94.49 92.63 5547.76 06/24/09 83.63 81.77 5561.48 09/10/09 69.91 68.05 5548.14 12/11/09 83.25 81.39	5,573.42				05/24/05	57.97	56.11	
5,555.98 12/07/05 75.41 73.55 5,552.00 03/08/06 79.39 77.53 5,545.74 06/13/06 85.65 83.79 5,544.06 07/18/06 87.33 85.47 5,548.81 11/07/06 82.58 80.72 5543.59 02/27/07 87.80 85.94 5544.55 05/02/07 86.84 84.98 5558.97 08/15/07 72.42 70.56 5559.73 10/10/07 71.66 69.8 5569.26 03/26/08 62.13 60.27 5535.47 06/25/08 95.92 94.06 5541.41 08/26/08 89.98 88.12 5558.45 10/14/08 72.94 71.08 5536.9 03/03/09 94.49 92.63 5547.76 06/24/09 83.63 81.77 5561.48 09/10/09 69.91 68.05 5548.14 12/11/09 83.25 81.39	5,552.94				07/29/05	78.45	76.59	
5,552.00 03/08/06 79.39 77.53 5,545.74 06/13/06 85.65 83.79 5,544.06 07/18/06 87.33 85.47 5,548.81 11/07/06 82.58 80.72 5543.59 02/27/07 87.80 85.94 5544.55 05/02/07 86.84 84.98 5558.97 08/15/07 72.42 70.56 5559.73 10/10/07 71.66 69.8 5569.26 03/26/08 62.13 60.27 5535.47 06/25/08 95.92 94.06 5541.41 08/26/08 89.98 88.12 5558.45 10/14/08 72.94 71.08 5536.9 03/03/09 94.49 92.63 5547.76 06/24/09 83.63 81.77 5561.48 09/10/09 69.91 68.05 5548.14 12/11/09 83.25 81.39	5,554.00				09/12/05	77.39	75.53	
5,545.74 06/13/06 85.65 83.79 5,544.06 07/18/06 87.33 85.47 5,548.81 11/07/06 82.58 80.72 5543.59 02/27/07 87.80 85.94 5544.55 05/02/07 86.84 84.98 5558.97 08/15/07 72.42 70.56 5559.73 10/10/07 71.66 69.8 5569.26 03/26/08 62.13 60.27 5535.47 06/25/08 95.92 94.06 5541.41 08/26/08 89.98 88.12 5558.45 10/14/08 72.94 71.08 5536.9 03/03/09 94.49 92.63 5547.76 06/24/09 83.63 81.77 5561.48 09/10/09 69.91 68.05 5548.14 12/11/09 83.25 81.39	5,555.98				12/07/05	75.41	73.55	
5,544.06 07/18/06 87.33 85.47 5,548.81 11/07/06 82.58 80.72 5543.59 02/27/07 87.80 85.94 5544.55 05/02/07 86.84 84.98 5558.97 08/15/07 72.42 70.56 5559.73 10/10/07 71.66 69.8 5569.26 03/26/08 62.13 60.27 5535.47 06/25/08 95.92 94.06 5541.41 08/26/08 89.98 88.12 5558.45 10/14/08 72.94 71.08 5536.9 03/03/09 94.49 92.63 5547.76 06/24/09 83.63 81.77 5561.48 09/10/09 69.91 68.05 5548.14 12/11/09 83.25 81.39	5,552.00				03/08/06	79.39	77.53	
5,548.81 11/07/06 82.58 80.72 5543.59 02/27/07 87.80 85.94 5544.55 05/02/07 86.84 84.98 5558.97 08/15/07 72.42 70.56 5559.73 10/10/07 71.66 69.8 5569.26 03/26/08 62.13 60.27 5535.47 06/25/08 95.92 94.06 5541.41 08/26/08 89.98 88.12 5558.45 10/14/08 72.94 71.08 5536.9 03/03/09 94.49 92.63 5547.76 06/24/09 83.63 81.77 5561.48 09/10/09 69.91 68.05 5548.14 12/11/09 83.25 81.39	5,545.74				06/13/06	85.65	83.79	
5543.59 02/27/07 87.80 85.94 5544.55 05/02/07 86.84 84.98 5558.97 08/15/07 72.42 70.56 5559.73 10/10/07 71.66 69.8 5569.26 03/26/08 62.13 60.27 5535.47 06/25/08 95.92 94.06 5541.41 08/26/08 89.98 88.12 5558.45 10/14/08 72.94 71.08 5536.9 03/03/09 94.49 92.63 5547.76 06/24/09 83.63 81.77 5561.48 09/10/09 69.91 68.05 5548.14 12/11/09 83.25 81.39	5,544.06				07/18/06	87.33	85.47	
5544.55 05/02/07 86.84 84.98 5558.97 08/15/07 72.42 70.56 5559.73 10/10/07 71.66 69.8 5569.26 03/26/08 62.13 60.27 5535.47 06/25/08 95.92 94.06 5541.41 08/26/08 89.98 88.12 5558.45 10/14/08 72.94 71.08 5536.9 03/03/09 94.49 92.63 5547.76 06/24/09 83.63 81.77 5561.48 09/10/09 69.91 68.05 5548.14 12/11/09 83.25 81.39	5,548.81				11/07/06	82.58	80.72	
5558.97 08/15/07 72.42 70.56 5559.73 10/10/07 71.66 69.8 5569.26 03/26/08 62.13 60.27 5535.47 06/25/08 95.92 94.06 5541.41 08/26/08 89.98 88.12 5558.45 10/14/08 72.94 71.08 5536.9 03/03/09 94.49 92.63 5547.76 06/24/09 83.63 81.77 5561.48 09/10/09 69.91 68.05 5548.14 12/11/09 83.25 81.39	5543.59				02/27/07	87.80	85.94	
5559.73 10/10/07 71.66 69.8 5569.26 03/26/08 62.13 60.27 5535.47 06/25/08 95.92 94.06 5541.41 08/26/08 89.98 88.12 5558.45 10/14/08 72.94 71.08 5536.9 03/03/09 94.49 92.63 5547.76 06/24/09 83.63 81.77 5561.48 09/10/09 69.91 68.05 5548.14 12/11/09 83.25 81.39	5544.55				05/02/07	86.84	84.98	
5569.26 03/26/08 62.13 60.27 5535.47 06/25/08 95.92 94.06 5541.41 08/26/08 89.98 88.12 5558.45 10/14/08 72.94 71.08 5536.9 03/03/09 94.49 92.63 5547.76 06/24/09 83.63 81.77 5561.48 09/10/09 69.91 68.05 5548.14 12/11/09 83.25 81.39	5558.97				08/15/07	72.42	70.56	
5535.47 06/25/08 95.92 94.06 5541.41 08/26/08 89.98 88.12 5558.45 10/14/08 72.94 71.08 5536.9 03/03/09 94.49 92.63 5547.76 06/24/09 83.63 81.77 5561.48 09/10/09 69.91 68.05 5548.14 12/11/09 83.25 81.39	5559.73				10/10/07	71.66	69.8	
5541.41 08/26/08 89.98 88.12 5558.45 10/14/08 72.94 71.08 5536.9 03/03/09 94.49 92.63 5547.76 06/24/09 83.63 81.77 5561.48 09/10/09 69.91 68.05 5548.14 12/11/09 83.25 81.39	5569.26				03/26/08	62.13	60.27	
5558.45 10/14/08 72.94 71.08 5536.9 03/03/09 94.49 92.63 5547.76 06/24/09 83.63 81.77 5561.48 09/10/09 69.91 68.05 5548.14 12/11/09 83.25 81.39	5535.47				06/25/08	95.92	94.06	
5536.9 03/03/09 94.49 92.63 5547.76 06/24/09 83.63 81.77 5561.48 09/10/09 69.91 68.05 5548.14 12/11/09 83.25 81.39	5541.41				08/26/08	89.98	88.12	
5547.76 06/24/09 83.63 81.77 5561.48 09/10/09 69.91 68.05 5548.14 12/11/09 83.25 81.39	5558.45				10/14/08	72.94	71.08	
5561.48 09/10/09 69.91 68.05 5548.14 12/11/09 83.25 81.39	5536.9				03/03/09	94.49	92.63	
5548.14 12/11/09 83.25 81.39	5547.76				06/24/09	83.63	81.77	
5548.14 12/11/09 83.25 81.39	5561.48				09/10/09	69.91	68.05	
					12/11/09			
	5,570.58				03/11/10	60.81	58.95	

						Total or		
			Measuring			Measured		
	Water	Land	Point			Depth to	Total Depth	
	Elevation	Surface	Elevation	Length Of	Date Of	Water	to Water	Total Depth Of
	(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
		5,629.53	5,631.39	1.86				121.33
-	5,561.35				05/11/10	70.04	68.18	
	5,535.26				09/29/10	96.13	94.27	
	5,568.40				12/21/10	62.99	61.13	
	5,550.36				02/28/11	81.03	79.17	
	5,570.41				06/21/11	60.98	59.12	
	5,567.84				09/20/11	63.55	61.69	
	5,571.32				12/21/11	60.07	58.21	
	5,572.40				03/27/12	58.99	57.13	
	5,572.39				06/28/12	59.00	57.14	
	5,571.40				09/27/12	59.99	58.13	
	5,568.21				12/28/12	63.18	61.32	
	5,572.51				03/28/13	58.88	57.02	
	5,566.00				06/27/13	65.39	63.53	
	5,568.37				09/27/13	63.02	61.16	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,628.52	5,629.53	1.01				106.0
5,565.70				07/29/05	63.83	62.82	
5,546.53				08/30/05	83.00	81.99	
5,540.29				09/12/05	89.24	88.23	
5,541.17				12/07/05	88.36	87.35	
5,540.33				03/08/06	89.20	88.19	
5,530.43				06/13/06	99.10	98.09	
5,569.13				07/18/06	60.40	59.39	
5,547.95				11/07/06	81.58	80.57	
5,549.25				02/27/07	80.28	79.27	
5,550.58				05/02/07	78.95	77.94	
5,563.60				08/14/07	65.93	64.92	
5,555.85				10/10/07	73.68	72.67	
5,569.10				03/26/08	60.43	59.42	
5,560.00				06/25/08	69.53	68.52	
5,539.64				08/26/08	89.89	88.88	
5,539.51				10/14/08	90.02	89.01	
5,553.00				03/03/09	76.53	75.52	
5,534.18				06/24/09	95.35	94.34	
5,558.39				09/10/09	71.14	70.13	
5,560.99				12/11/09	68.54	67.53	
5,564.09				03/11/10	65.44	64.43	
5,564.22				05/11/10	65.31	64.30	
5,560.33				09/29/10	69.20	68.19	
5,561.35				12/21/10	68.18	67.17	
5,560.18				02/28/11	69.35	68.34	
5,576.23				06/21/11	53.30	52.29	
5,548.50				09/20/11	81.03	80.02	
5,558.58				12/21/11	70.95	69.94	
5,567.73				03/27/12	61.80	60.79	
5,567.77				06/28/12	61.76	60.75	
5,569.58				09/27/12	59.95	58.94	
5,572.58				12/28/12	56.95	55.94	
5,571.52				03/28/13	58.01	57.00	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,638.20	5,639.35	1.15				120.92
5,582.98				07/29/05	56.37	55.22	
5,583.43				08/30/05	55.92	54.77	
5,581.87				09/12/05	57.48	56.33	
5,580.50				12/07/05	58.85	57.70	
5,583.64				03/08/06	55.71	54.56	
5,580.55				06/13/06	58.80	57.65	
5,578.95				07/18/06	60.40	59.25	
5,578.47				11/07/06	60.88	59.73	
5,579.53				02/27/07	59.82	58.67	
5,578.07				05/02/07	61.28	60.13	
5,583.41				08/15/07	55.94	54.79	
5,583.45				10/10/07	55.90	54.75	
5,586.47				03/26/08	52.88	51.73	
5,579.16				06/24/08	60.19	59.04	
5,579.92				08/26/08	59.43	58.28	
5,577.37				10/14/08	61.98	60.83	
5,578.00				03/10/09	61.35	60.20	
5,580.14				06/24/09	59.21	58.06	
5,578.72				09/10/09	60.63	59.48	
5,579.99				12/11/09	59.36	58.21	
5,582.81				03/11/10	56.54	55.39	
5,582.23				05/11/10	57.12	55.97	
5,576.60				09/29/10	62.75	61.60	
5,581.14				12/21/10	58.21	57.06	
5,579.53				02/28/11	59.82	58.67	
5,584.17				06/21/11	55.18	54.03	
5,584.80				09/20/11	54.55	53.40	
5,585.68				12/21/11	53.67	52.52	
5,585.24				03/27/12	54.11	52.96	
5,585.26				06/28/12	54.09	52.94	
5,585.16				09/27/12	54.19	53.04	
5,585.25				12/28/12	54.10	52.95	
5,582.84				03/28/13	56.51	55.36	
5,581.79				06/27/13	57.56	56.41	
5,580.89				09/27/13	58.46	57.31	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,627.83	5,629.00	1.17				113.5
5,571.89				07/29/05	57.11	55.94	
5,572.20				08/30/05	56.80	55.63	
5,572.08				09/12/05	56.92	55.75	
5,571.61				12/07/05	57.39	56.22	
5,571.85				03/08/06	57.15	55.98	
5,571.62				06/13/06	57.38	56.21	
5,571.42				07/18/06	57.58	56.41	
5,571.02				11/07/06	57.98	56.81	
5571.24				02/27/07	57.76	56.59	
5,570.75				06/29/07	58.25	57.08	
5,571.82				08/14/07	57.18	56.01	
5,571.99				10/10/07	57.01	55.84	
5,573.05				03/26/08	55.95	54.78	
5,573.04				06/24/08	55.96	54.79	
5,573.04				08/26/08	55.96	54.79	
5,573.02				10/14/08	55.98	54.81	
5,573.19				03/10/09	55.81	54.64	
5,573.32				06/24/09	55.68	54.51	
5,573.17				09/10/09	55.83	54.66	
5,573.52				12/11/09	55.48	54.31	
5,573.88				03/11/10	55.12	53.95	
5,574.29				05/11/10	54.71	53.54	
5,574.88				09/29/10	54.12	52.95	
5,574.44				12/21/10	54.56	53.39	
5,574.49				02/28/11	54.51	53.34	
5,574.97				06/21/11	54.03	52.86	
5,575.06				09/20/11	53.94	52.77	
5,575.69				12/21/11	53.31	52.14	
5,575.61				03/27/12	53.39	52.22	
5,575.62				06/28/12	53.38	52.21	
5,575.90				09/27/12	53.10	51.93	
5,575.59				12/28/12	53.41	52.24	
5,573.50				03/28/13	55.50	54.33	
5,572.45				06/27/13	56.55	55.38	
5,572.25				09/27/13	56.75	55.58	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,605.77	5,607.37	1.60				113.5
5,538.89				09/13/07	68.48	66.88	
5,538.80				10/10/07	68.57	66.97	
5,539.25				11/30/07	68.12	66.52	
5,539.49				12/11/07	67.88	66.28	
5,539.19				01/08/08	68.18	66.58	
5,539.44				02/18/08	67.93	66.33	
5,539.54				03/26/08	67.83	66.23	
5,539.71				04/23/08	67.66	66.06	
5539.48				05/30/08	67.89	66.29	
5,539.53	2			06/24/08	67.84	66.24	
5,539.44	•			07/16/08	67.93	66.33	
5,539.68				08/26/08	67.69	66.09	
5,541.18				09/10/08	66.19	64.59	
5,539.57				10/14/08	67.80	66.20	
5,539.29				11/26/08	68.08	66.48	
5,539.55				12/29/08	67.82	66.22	
5,540.15				01/26/09	67.22	65.62	
5,539.74				02/24/09	67.63	66.03	
5,539.86				03/06/09	67.51	65.91	
5,539.72				04/07/09	67.65	66.05	
5,539.84				05/29/09	67.53	65.93	
5,540.12				06/30/09	67.25	65.65	
5,540.12				07/31/09	67.25	65.65	
5,540.27				08/31/09	67.10	65.50	
5,540.13				09/10/09	67.24	65.64	
5,540.64				12/11/09	66.73	65.13	
5,541.15				03/11/10	66.22	64.62	
5,541.61				05/11/10	65.76	64.16	
5,541.47				09/29/10	65.90	64.30	
5,541.54				12/21/10	65.83	64.23	
5,541.54				02/28/11	65.83	64.23	
5,541.98				06/21/11	65.39	63.79	
5,541.90				09/20/11	65.47	63.87	
5,542.58				12/21/11	64.79	63.19	
5,542.59				03/27/12	64.78	63.18	
5,542.61				06/28/12	64.76	63.16	
5,542.92				09/27/12	64.45	62.85	
5,542.61				12/28/12	64.76	63.16	
5,543.48				03/28/13	63.89	62.29	
-,							

		vv nit	e Mesa Mi	II - Well I W			
					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,625.70	5,627.83	2.13				113.5
5,570.61				09/13/07	57.22	55.09	
5,570.53				10/10/07	57.30	55.17	
5,571.16				11/30/07	56.67	54.54	
5,571.30				12/11/07	56.53	54.40	
5,571.03				01/08/08	56.80	54.67	
5,571.22				02/18/08	56.61	54.48	
5,571.43				03/26/08	56.40	54.27	
5,571.68				04/23/08	56.15	54.02	
5571.52				05/30/08	56.31	54.18	
5,571.34				06/24/08	56.49	54.36	
5,571.28				07/16/08	56.55	54.42	
5,571.34				08/26/08	56.49	54.36	
5,571.23				09/10/08	56.60	54.47	
5,571.12				10/14/08	56.71	54.58	
5,570.95				11/26/08	56.88	54.75	
5,570.92				12/29/08	56.91	54.78	
5,571.65				01/26/09	56.18	54.05	
5,571.31				02/24/09	56.52	54.39	
5,571.37				03/06/09	56.46	54.33	
5,571.21				04/07/09	56.62	54.49	
5,571.23				05/29/09	56.60	54.47	
5,571.42				06/30/09	56.41	54.28	
5,571.38				07/31/09	56.45	54.32	
5,571.48				08/31/09	56.35	54.22	
5,571.28				09/10/09	56.55	54.42	
5,571.64				12/11/09	56.19	54.06	
5,571.86				03/11/10	55.97	53.84	
5,571.91				05/11/10	55.92	53.79	
5,572.18				09/29/10	55.65	53.52	
5,571.86				12/21/10	55.97	53.84	
5,571.78				02/28/11	56.05	53.92	
5,572.40				06/21/11	55.43	53.30	
5,572.19				09/20/11	55.64	53.51	
5,573.02				12/21/11	54.81	52.68	
5,573.03				03/27/12	54.80	52.67	
5,573.02				06/28/12	54.81	52.68	
5,573.13				09/27/12	54.70	52.57	
5,573.05				12/28/12	54.78	52.65	
5,566.53				03/28/13	61.30	59.17	
5,564.63				06/27/13	63.20	61.07	
5,570.01				09/27/13	57.82	55.69	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of		Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,627.83	5,644.91	17.08				134.8
5,601.86				09/13/07	43.05	25.97	
5,601.89				10/10/07	43.02	25.94	
5,602.57				11/30/07	42.34	25.26	
5,602.82				12/11/07	42.09	25.01	
5,601.94				01/08/08	42.97	25.89	
5,599.13				02/18/08	45.78	28.70	
5,597.11				03/26/08	47.80	30.72	
5,595.51				04/23/08	49.40	32.32	
5594.42				05/30/08	50.49	33.41	
5,594.26				06/24/08	50.65	33.57	
5,586.67				07/16/08	58.24	41.16	
5,594.17				08/26/08	50.74	33.66	
5,594.23				09/10/08	50.68	33.60	
5,594.12				10/14/08	50.79	33.71	
5,594.06				11/26/08	50.85	33.77	
5,594.87				12/29/08	50.04	32.96	
5,595.89				01/26/09	49.02	31.94	
5,596.27				02/24/09	48.64	31.56	
5,596.47				03/06/09	48.44	31.36	
5,596.74				04/07/09	48.17	31.09	
5,597.55				05/29/09	47.36	30.28	
5,598.11				06/30/09	46.80	29.72	
5,598.22				07/31/09	46.69	29.61	
5,598.52				08/31/09	46.39	29.31	
5,598.49				09/10/09	46.42	29.34	
5,599.48				12/11/09	45.43	28.35	
5,599.75				03/11/10	45.16	28.08	
5,599.63				05/11/10	45.28	28.20	
5,598.68				09/29/10	46.23	29.15	
5,598.66				12/21/10	46.25	29.17	
5,598.18				02/28/11	46.73	29.65	
5,598.61				06/21/11	46.30	29.22	
5,598.08				09/20/11	46.83	29.75	
5,598.23				12/21/11	46.68	29.60	
5,597.41				03/27/12	47.50	30.42	
5,597.41				06/28/12	47.50	30.42	
5,595.60				09/27/12	49.31	32.23	
5,597.41				12/28/12	47.50	30.42	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,599.98	5,601.68	1.70				86
5,536.90				06/14/10	64.78	63.08	
5,536.95				09/29/10	64.73	63.03	
5,537.17				12/21/10	64.51	62.81	
5,537.16				02/28/11	64.52	62.82	
5,537.57				06/21/11	64.11	62.41	
5,537.59				09/20/11	64.09	62.39	
5,538.16				12/21/11	63.52	61.82	
5,538.18				03/27/12	63.50	61.80	
5538.23				06/28/12	63.45	61.75	
5,538.57				09/27/12	63.11	61.41	
5,538.20				12/28/12	63.48	61.78	
5,539.13				03/28/13	62.55	60.85	
5,539.00				06/27/13	62.68	60.98	
5,538.94				09/27/13	62.74	61.04	

Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
5,606.19	5,607.94	1.75				96
			12/21/11 03/27/12	90.16 83.10	88.41 81.35	
			06/28/12	83.01	81.26	
			09/27/12	82.35	80.60	
			12/28/12	83.08	81.33	
			03/28/13	81.57	79.82	
			06/27/13	81.65	79.90	
			09/27/13	80.90	79.15	
	Surface	Land Point Surface Elevation (LSD) (MP)	Land Point Surface Elevation Length Of (LSD) (MP) Riser (L)	Land Surface (LSD) Elevation (MP) Length Of Riser (L) Date Of Monitoring 5,606.19 5,607.94 1.75 12/21/11 03/27/12 06/28/12 09/27/12 12/28/12 09/27/12 12/28/12 03/28/13 06/27/13	Land Surface (LSD) Elevation (MP) Length Of Riser (L) Date Of Monitoring Water (blw.MP) 5,606.19 5,607.94 1.75 12/21/11 90.16 03/27/12 83.10 06/28/12 83.01 09/27/12 82.35 12/28/12 83.08 03/28/13 81.57 06/27/13 81.65	Land Surface (LSD) Elevation (MP) Length Of Riser (L) Date Of Monitoring Water (blw.MP) Water (blw.LSD) 5,606.19 5,607.94 1.75 12/21/11 90.16 88.41 03/27/12 83.10 81.35 06/28/12 83.01 81.26 09/27/12 83.08 81.33 03/28/13 81.57 79.82 06/27/13 81.65 79.90

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitorin	Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,613.52	5,617.00	3.48				105
5,580.69				03/28/13	36.31	32.83	
5,580.30 5,580.35				06/27/13 09/27/13	36.70 36.65	33.22 33.17	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)		Date Of Monitorin	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,602.56	5,606.04	3.48				105
5,533.98				03/28/13	72.06	68.58	
5,533.84				06/27/13	72.20	68.72	
5,534.27				09/27/13	71.77	68.29	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)		Date Of Monitorin g	Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,599.33	5,602.81	3.48				105
5,524.78				03/28/13	78.03	74.55	
5,524.79				06/27/13	78.02	74.54	
5,525.54				09/27/13	77.27	73.79	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitorin	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,601.10	5,604.58	3.48			, , , , , , , , , , , , , , , , , , , ,	105
5,520.17				03/28/13	84.41	80.93	
5,520.36				06/27/13	84.22	80.74	
5,521.22				09/27/13	83.36	79.88	

Tab H Laboratory Analytical Reports

INORGANIC ANALYTICAL REPORT

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013 1309103-004

Lab Sample ID: Client Sample ID: MW-04 09032013

Collection Date:

1335h

Received Date:

9/3/2013 9/6/2013

1145h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/12/2013 1419	E300.0	10.0	41.4	
Nitrate/Nitrite (as N)	mg/L		9/12/2013 18581	E353.2	1.00	4.89	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

ORGANIC ANALYTICAL REPORT

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID: Client Sample ID: MW-04 09032013

1309103-004C

Collection Date:

9/3/2013 1335h

Received Date:

9/6/2013 1145h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/9/2013 2044h

Units: µg/L

Dilution Factor: 20

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

Compound			CAS umber	Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	20.0	1,520	v.
Surrogate	CAS	Result	Amount Spik	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	1,120	1,000	112	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	936	1,000	93.6	80-128	
Surr: Dibromofluoromethane	1868-53-7	1,070	1,000	107	80-124	
Surr: Toluene-d8	2037-26-5	944	1,000	94.4	77-129	

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 9/9/2013 1045h

Units: µg/L Dilution Factor: 1

SW8260C Method:

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	1.13	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	54.9	50.00	110	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	45.1	50.00	90.1	80-128	
Surr: Dibromofluoromethane	1868-53-7	54.0	50.00	108	80-124	
Surr: Toluene-d8	2037-26-5	47.2	50.00	94.4	77-129	

INORGANIC ANALYTICAL REPORT

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

3rd Quarter Chloroform 2013

Project: Lab Sample ID:

1309255-006

Client Sample ID: TW4-01 09122013 9/12/2013 0800h

Collection Date: Received Date:

9/13/2013 1015h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Nitrate/Nitrite (as N)	mg/L		9/17/2013 2105h	E353.2	1.00	7.12	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

INORGANIC ANALYTICAL REPORT

Contact: Garrin Palmer

Result

37.6

Qual

Client: Project: Energy Fuels Resources, Inc.

3rd Quarter Chloroform 2013

Lab Sample ID:

1309328-001

Client Sample ID: TW4-01 09122013 **Collection Date:**

Received Date:

9/12/2013 0800h 9/18/2013 0930h

Analytical Results

Date Date Method Reporting Analytical Compound Used Limit Units **Prepared Analyzed** 463 West 3600 South Chloride E300.0 10.0 3alt Lake City, UT 84115 mg/L 9/19/2013 1829h

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

ORGANIC ANALYTICAL REPORT

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID: Client Sample ID: TW4-01 09122013

1309255-006C

Collection Date:

Received Date:

9/12/2013 0800h 9/13/2013 1015h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/17/2013 1431h

Units: µg/L

Compound

Surr: Toluene-d8

Dilution Factor: 10

Method:

SW8260C

463 West 3600 South 3alt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Compound			CAS umber	Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	10.0	1,150	: *
Surrogate	CAS	Result	Amount Spik	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	552	500.0	110	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	513	500.0	103	80-128	
Surr: Dibromofluoromethane	1868-53-7	521	500.0	104	80-124	
Surr: Toluene-d8	2037-26-5	501	500.0	100	77-129	

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 9/16/2013 2150h

Units: µg/L **Dilution Factor: 1** Method:

99.0

Reporting

Limit

SW8260C

Analytical

Result

77-129

Oual

Carbon tetrachloride		56-23-5		1.00	< 1.00	
Chloromethane Methylene chloride		7	4-87-3	1.00	< 1.00	
		75-09-2		1.00	< 1.00	
Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	56.5	50.00	113	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.6	50.00	101	80-128	
Surr: Dibromofluoromethane	1868-53-7	53.8	50.00	108	80-124	

49.5

CAS

Number

50.00

2037-26-5

INORGANIC ANALYTICAL REPORT

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309255-007

Client Sample ID: TW4-02 09122013 **Collection Date:**

Received Date:

9/12/2013 0807h 9/13/2013 1015h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/18/2013 2155h	E300.0	10.0	44.9	
Nitrate/Nitrite (as N)	mg/L		9/17/2013 2106h	E353.2	1.00	9.30	

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

ORGANIC ANALYTICAL REPORT

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID: Client Sample ID: TW4-02 09122013

1309255-007C

Collection Date:

9/12/2013 0807h

Received Date:

9/13/2013 1015h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/17/2013 1450h

Units: µg/L

Dilution Factor: 20

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

e-mail: awal@awal-labs.com

Fax: (801) 263-8687

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Compound			CAS umber	Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	20.0	3,480	~
Surrogate	CAS	Result	Amount Spik	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	1,120	1,000	112	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	1,030	1,000	103	80-128	
Surr: Dibromofluoromethane	1868-53-7	1,040	1,000	104	80-124	
Surr: Toluene-d8	2037-26-5	994	1,000	99.4	77-129	

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 9/16/2013 2209h

Units: µg/L **Dilution Factor:** 1

SW8260C Method:

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	2.41	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	57.4	50.00	115	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	52.3	50.00	105	80-128	
Surr: Dibromofluoromethane	1868-53-7	54.5	50.00	109	80-124	
Surr: Toluene-d8	2037-26-5	50.4	50.00	101	77-129	

INORGANIC ANALYTICAL REPORT

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

Client Sample ID: TW4-03_08292013 Collection Date: 8/29/2013 0700h

Collection Date: Received Date:

8/30/2013 0945h

1308555-009

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analy	70	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/3/2013	2125h	E300.0	5.00	24.0	
Nitrate/Nitrite (as N)	mg/L		8/30/2013	1645h	E353.2	1.00	6.26	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

ORGANIC ANALYTICAL REPORT

Client:

Energy Fuels Resources, Inc.

Project: Lab Sample ID: 3rd Quarter Chloroform 2013 1308555-009C

Client Sample ID: TW4-03 08292013

Collection Date: Received Date:

8/29/2013 0700h 8/30/2013 0945h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 8/30/2013 1644h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	57.6	50.00	115	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	49.3	50.00	98.6	80-128	
Surr: Dibromofluoromethane	1868-53-7	52.8	50.00	106	80-124	
Surr: Toluene-d8	2037-26-5	49.6	50.00	99.1	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha OA Officer

> > Report Date: 9/11/2013 Page 22 of 31

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1308555-001

Collection Date:

Client Sample ID: TW4-03R 08282013

8/28/2013 0933h

Received Date:

8/30/2013 0945h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Dat Analy	-	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/3/2013	1622h	E300.0	1.00	< 1.00	
Nitrate/Nitrite (as N)	mg/L		8/30/2013	1629h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 9/11/2013 Page 5 of 31

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1308555-001C

Client Sample ID: TW4-03R 08282013

Collection Date:

8/28/2013 0933h

Received Date:

8/30/2013 0945h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 8/30/2013 1331h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00
Chloroform	67-66-3	1.00	< 1.00
Chloromethane	74-87-3	1.00	< 1.00
Methylene chloride	75-09-2	1.00	< 1.00

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	55.4	50.00	111	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.9	50.00	102	80-128	
Surr: Dibromofluoromethane	1868-53-7	52.1	50.00	104	80-124	
Surr: Toluene-d8	2037-26-5	50.9	50.00	102	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha OA Officer

> > Report Date: 9/11/2013 Page 14 of 31

Contact: Garrin Palmer

Client: Project: Energy Fuels Resources, Inc.

Lab Sample ID:

3rd Quarter Chloroform 2013 1309103-003

Client Sample ID: TW4-04 09032013 **Collection Date:** 9/3/2013 1347h **Received Date:** 9/6/2013 1145h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/12/2013 1354h	E300.0	10.0	38.8	
Nitrate/Nitrite (as N)	mg/L		9/12/2013 1856h	E353.2	1.00	7.22	

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 9/18/2013 Page 9 of 55

Client:

Energy Fuels Resources, Inc.

Project: Lab Sample ID: 3rd Quarter Chloroform 2013

Client Sample ID: TW4-04 09032013

1309103-003C

Collection Date:

9/3/2013 1347h

Received Date:

9/6/2013 1145h Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/9/2013 2025h

Units: µg/L

Dilution Factor: 10

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Chlara Carra			CAS (umber	Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	10.0	1,380	~
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	568	500.0	114	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	482	500.0	96.5	80-128	
Surr: Dibromofluoromethane	1868-53-7	545	500.0	109	80-124	
Surr: Toluene-d8	2037-26-5	479	500.0	95.7	77-129	

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 9/9/2013 1026h

Compound

Units: µg/L

Dilution Factor: 1

Method:

Reporting

Limit

SW8260C

Analytical

Result

Qual

•						
Carbon tetrachloride		5	6-23-5	1,00	< 1.00	
Chloromethane		7	74-87-3		< 1.00	
Methylene chloride		75-09-2		1.00	< 1.00	
Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	54.5	50.00	109	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	44.2	50.00	88.5	80-128	
Surr: Dibromofluoromethane	1868-53-7	54.4	50.00	109	80-124	
Surr: Toluene-d8	2037-26-5	47.2	50.00	94.4	77-129	

CAS

Number

Contact: Garrin Palmer

Client: Project: Energy Fuels Resources, Inc.

1145h

Lab Sample ID:

3rd Quarter Chloroform 2013 1309103-019

Client Sample ID: TW4-05 09052013

Collection Date:

9/5/2013 0805h

Received Date: 9/6/2013

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/13/2013 0003h	E300.0	10.0	39.1	
Nitrate/Nitrite (as N)	mg/L		9/12/2013 1929h	E353.2	1.00	7.79	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross **Laboratory Director**

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

1145h

Lab Sample ID:

1309103-019C

Client Sample ID: TW4-05 09052013

Collection Date:

9/5/2013 0805h

9/6/2013

Test Code: 8260-W

Received Date: Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/9/2013 1947h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	11.6	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	55.5	50.00	111	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	47.4	50.00	94.9	80-128	
Surr: Dibromofluoromethane	1868-53-7	52.3	50.00	105	80-124	
Surr: Toluene-d8	2037-26-5	46.2	50.00	92.5	77-129	

Kyle F. Gross Laboratory Director

Contact: Garrin Palmer

Client: Project: Energy Fuels Resources, Inc.

3rd Quarter Chloroform 2013

1309103-010

Lab Sample ID:

Client Sample ID: TW4-05R 09042013 9/4/2013 1407h

Collection Date: Received Date:

9/6/2013 1145h

Analytical Results

463 West 3600 South 3alt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/12/2013 1809h	E300.0	1.00	< 1.00	
Nitrate/Nitrite (as N)	mg/L		9/12/2013 1913h	E353.2	0.100	< 0.100	

J - Estimated value between the MDL and the reporting limit (PQL).

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309103-010C

Client Sample ID: TW4-05R_09042013

Collection Date:

9/4/2013 1407h

Received Date:

9/6/2013 1145h Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/9/2013 2239h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	57.2	50.00	114	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	48.2	50.00	96.5	80-128	
Surr: Dibromofluoromethane	1868-53-7	53.0	50.00	106	80-124	
Surr: Toluene-d8	2037-26-5	47.4	50.00	94.8	77-129	

Kyle F. Gross Laboratory Director

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

3rd Quarter Chloroform 2013

Project: Lab Sample ID:

1309103-018

Client Sample ID: TW4-06 09052013

Collection Date:

9/5/2013 0757h

Received Date:

9/6/2013 1145h

Analytical Results

463 West 3600 South 3alt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/12/2013 2337h	E300.0	10.0	40.6	
Nitrate/Nitrite (as N)	mg/L		9/12/2013 1928h	E353.2	0.100	0.157	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

3rd Quarter Chloroform 2013

Project: 3rd Quarter Ch **Lab Sample ID:** 1309103-018C

Client Sample ID: TW4-06_09052013 **Collection Date:** 9/5/2013 0757h **Received Date:** 9/6/2013 1145h

Analytical Results

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/9/2013 1928h

Units: μg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	5.93	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual				
Surr: 1,2-Dichloroethane-d4	17060-07-0	55.7	50.00	111	72-151					
Surr: 4-Bromofluorobenzene	460-00-4	48.5	50.00	96.9	80-128					
Surr: Dibromofluoromethane	1868-53-7	52.6	50.00	105	80-124					
Surr: Toluene-d8	2037-26-5	47.5	50.00	95.1	77-129					

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 9/18/2013 Page 44 of 55

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309255-005

Collection Date:

Client Sample ID: TW4-07_09122013 9/12/2013 0753h

Received Date:

9/13/2013 1015h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/18/2013 2131h	E300.0	10.0	36.4	
Nitrate/Nitrite (as N)	mg/L		9/17/2013 2104h	E353.2	1.00	4.17	30

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client: Project: Energy Fuels Resources, Inc.

3rd Quarter Chloroform 2013

Lab Sample ID:

1309255-005C

Client Sample ID: TW4-07_09122013 **Collection Date:** 9/12/2013 0753h

Received Date: 9/13/2013 1015h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/17/2013 1413h

Units: µg/L

Dilution Factor: 10

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

Compound			CAS umber	Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	10.0	1,040	-
Surrogate	CAS	Result	Amount Spik	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	555	500.0	111	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	518	500.0	104	80-128	
Surr: Dibromofluoromethane	1868-53-7	522	500.0	104	80-124	
Surr: Toluene-d8	2037-26-5	504	500.0	101	77-129	

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 9/16/2013 2132h

Surr: Toluene-d8

Units: µg/L Dilution Factor: 1 Method:

102

Reporting

SW8260C

Analytical

77-129

Compound		N	umber	Limit	Result	Qual
Carbon tetrachloride		5	6-23-5	1.00	< 1.00	
Chloromethane		7	4-87-3	1.00	< 1.00	
Methylene chloride		7	5-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	57.5	50.00	115	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	52.4	50.00	105	80-128	
Surr: Dibromofluoromethane	1868-53-7	54.9	50.00	110	80-124	

51.1

CAS

50.00

2037-26-5

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309103-014

Client Sample ID: TW4-08 09052013

0710h

Collection Date:

9/5/2013

Received Date:

9/6/2013 1145h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/12/2013 204	0h E300.0	10.0	47.5	
Nitrate/Nitrite (as N)	mg/L		9/12/2013 19	9h E353.2	0.100	< 0.100	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

3-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309103-014C

Client Sample ID: TW4-08 09052013

Collection Date:

9/5/2013 0710h

Received Date:

9/6/2013 1145h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/9/2013 1811h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	53.2	50.00	106	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	47.4	50.00	94.7	80-128	
Surr: Dibromofluoromethane	1868-53-7	51.0	50.00	102	80-124	
Surr: Toluene-d8	2037-26-5	48.2	50.00	96.4	77-129	

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309103-015

Client Sample ID: TW4-09 09052013 **Collection Date:**

9/5/2013 0723h

Received Date:

9/6/2013 1145h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analy	=	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/12/2013	2221h	E300.0	5.00	22.7	
Nitrate/Nitrite (as N)	mg/L		9/12/2013	1920h	E353.2	1.00	4.03	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

3rd Quarter Chloroform 2013

Lab Sample ID:

1309103-015C

Client Sample ID: TW4-09 09052013 **Collection Date:**

9/5/2013 0723h

Received Date:

9/6/2013 1145h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/9/2013 1830h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	55.0	50.00	110	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	47.7	50.00	95.3	80-128	
Surr: Dibromofluoromethane	1868-53-7	52.3	50.00	105	80-124	
Surr: Toluene-d8	2037-26-5	48.1	50.00	96.2	77-129	

Kyle F. Gross **Laboratory Director**

Client:

Energy Fuels Resources, Inc. 3rd Quarter Chloroform 2013

Contact: Garrin Palmer

Project: Lab Sample ID:

1309255-003

Client Sample ID: TW4-10 09122013

Collection Date:

9/12/2013 0723h

Received Date:

9/13/2013 1015h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/18/2013 1935h	E300.0	10.0	67.9	
Nitrate/Nitrite (as N)	mg/L		9/17/2013 2101h	E353.2	1.00	13.0	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013 1309255-003C

Lab Sample ID: Client Sample ID: TW4-10 09122013

Collection Date:

9/12/2013 0723h

Received Date:

9/13/2013 1015h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/17/2013 1336h

Units: µg/L

Compound

Dilution Factor: 10

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

e-mail: awal@awal-labs.com

Fax: (801) 263-8687

web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha **QA** Officer

Compound			CAS umber	Reporting Limit	Analytical Result	Qual
Chloroform		67-66-3		10.0	1,160	~
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	547	500.0	109	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	517	500.0	103	80-128	
Surr: Dibromofluoromethane	1868-53-7	524	500.0	105	80-124	
Surr: Toluene-d8	2037-26-5	511	500.0	102	77-129	

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 9/16/2013 2055h

Units: µg/L **Dilution Factor: 1** Method:

Reporting

Limit

SW8260C

Analytical

Result

Oual

Carbon tetrachloride		5	6-23-5	1.00	< 1.00	
Chloromethane		74-87-3		1.00	< 1.00	
Methylene chloride		75-09-2		1.00	< 1.00	
Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	57.2	50.00	114	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	52.8	50.00	106	80-128	
Surr: Dibromofluoromethane	1868-53-7	53.8	50.00	108	80-124	
Surr: Toluene-d8	2037-26-5	50.2	50.00	100	77-129	

CAS

Number

Contact: Garrin Palmer

Client: Energy Fuels Resources, Inc.

Project: 3rd Quarter Chloroform 2013

Lab Sample ID: 1309255-004

 Client Sample ID:
 TW4-11_09122013

 Collection Date:
 9/12/2013
 0747h

 Received Date:
 9/13/2013
 1015h

Analytical Results

463 West 3600 South 3alt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/18/2013 1958h	E300.0	10.0	46.6	
Nitrate/Nitrite (as N)	mg/L		9/17/2013 2102h	E353.2	1.00	7.80	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 9/24/2013 Page 8 of 29

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309255-004C

Client Sample ID: TW4-11_09122013

9/12/2013 0747h

Collection Date: Received Date:

9/13/2013 1015h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/17/2013 1354h

Units: µg/L

Dilution Factor: 10

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound			CAS lumber	Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	10.0	865	1
Surrogate	CAS	Result	Amount Spik	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	544	500.0	109	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	517	500.0	103	80-128	
Surr: Dibromofluoromethane	1868-53-7	514	500.0	103	80-124	
Surr: Toluene-d8	2037-26-5	507	500.0	101	77-129	

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 9/16/2013 2113h

Units: µg/L Dilution Factor: 1

SW8260C Method:

Compound			CAS Rember	eporting Limit	Analytical Result	Qual
Carbon tetrachloride		56	-23-5	1.00	< 1.00	
Chloromethane		74	-87-3	1.00	< 1.00	
Methylene chloride		75	-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Onal

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	56.5	50.00	113	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	52.7	50.00	105	80-128	
Surr: Dibromofluoromethane	1868-53-7	53.8	50.00	108	80-124	
Surr: Toluene-d8	2037-26-5	50.1	50.00	100	77-129	

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1308555-002 **Client Sample ID:** TW4-12 08292013

Collection Date:

8/29/2013 0715h

Received Date:

8/30/2013 0945h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Dat Analy		Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/3/2013	1732h	E300.0	5.00	41.7	
Nitrate/Nitrite (as N)	mg/L		8/30/2013	1631h	E353.2	1.00	17.4	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1308555-002C Client Sample ID: TW4-12 08292013

Collection Date:

8/29/2013 0715h

Received Date:

8/30/2013 0945h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 8/30/2013 1429h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00
Chloroform	67-66-3	1.00	< 1.00
Chloromethane	74-87-3	1.00	< 1.00
Methylene chloride	75-09-2	1.00	< 1.00

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	55.8	50.00	112	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	48.2	50.00	96.5	80-128	
Surr: Dibromofluoromethane	1868-53-7	51.8	50.00	104	80-124	
Surr: Toluene-d8	2037-26-5	49.4	50.00	98.9	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha OA Officer

> > Report Date: 9/11/2013 Page 15 of 31

Contact: Garrin Palmer

Client: Energy Fuels Resources, Inc.

Project: 3rd Quarter Chloroform 2013

Lab Sample ID: 1308555-003

 Client Sample ID:
 TW4-13_08292013

 Collection Date:
 8/29/2013
 0721h

 Received Date:
 8/30/2013
 0945h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analy	_	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/3/2013	1755h	E300.0	10.0	63.5	
Nitrate/Nitrite (as N)	mg/L		8/30/2013	1632h	E353.2	1.00	7.16	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID: Client Sample ID: TW4-13 08292013

1308555-003C

Collection Date:

8/29/2013 0721h

Received Date:

8/30/2013 0945h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 8/30/2013 1448h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00
Chloroform	67-66-3	1.00	< 1.00
Chloromethane	74-87-3	1.00	< 1.00
Methylene chloride	75-09-2	1.00	< 1.00

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	56,5	50.00	113	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	48.7	50.00	97.3	80-128	
Surr: Dibromofluoromethane	1868-53-7	52,2	50.00	104	80-124	
Surr: Toluene-d8	2037-26-5	49,8	50.00	99.6	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **OA** Officer

> > Report Date: 9/11/2013 Page 16 of 31

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID: Client Sample ID: TW4-14 08292013

1308555-004

Collection Date:

8/29/2013 0729h

Received Date:

8/30/2013 0945h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analy	-	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/3/2013	1818h	E300.0	5.00	37.6	
Nitrate/Nitrite (as N)	mg/L		8/30/2013	1634h	E353.2	1.00	4.51	T

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 9/11/2013 Page 8 of 31

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1308555-004C

Collection Date:

Client Sample ID: TW4-14 08292013 8/29/2013 0729h

Received Date:

8/30/2013 0945h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 8/30/2013 1507h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00
Chloroform	67-66-3	1.00	< 1.00
Chloromethane	74-87-3	1.00	< 1.00
Methylene chloride	75-09-2	1.00	< 1.00

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	56.3	50.00	113	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.4	50.00	101	80-128	
Surr: Dibromofluoromethane	1868-53-7	51.8	50.00	104	80-124	
Surr: Toluene-d8	2037-26-5	49.6	50.00	99.2	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 9/11/2013 Page 17 of 31

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013 1309103-006

Lab Sample ID:

Client Sample ID: MW-26 09032013

Collection Date:

1325h 9/3/2013

9/6/2013

Received Date:

1145h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/12/2013 1510h	E300.0	10.0	60.5	
Nitrate/Nitrite (as N)	mg/L		9/12/2013 1932h	E353.2	0.100	1.18	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID: Client Sample ID: MW-26 09032013

1309103-006C

Collection Date:

9/3/2013

1325h

Received Date:

9/6/2013 1145h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/9/2013 2122h

Units: µg/L

Dilution Factor: 20

Method:

SW8260C

Salt Lake City, UT 84115

463 West 3600 South

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

Compound			CAS umber	Reporting Limit	Analytical Result	Qual
Chloroform		67-66-3		20.0	2,940	
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	1,130	1,000	113	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	957	1,000	95.7	80-128	
Surr: Dibromofluoromethane	1868-53-7	1,100	1,000	110	80-124	
Surr: Toluene-d8	2037-26-5	957	1,000	95.7	77-129	

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 9/9/2013 1124h

Units: µg/L Dilution Factor: 1 Method:

SW8260C

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	33.2	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	55.0	50.00	110	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	44.5	50.00	89.0	80-128	
Surr: Dibromofluoromethane	1868-53-7	53.6	50.00	107	80-124	
Surr: Toluene-d8	2037-26-5	47.1	50.00	94.3	77-129	

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309103-016

Client Sample ID: TW4-16 09052013

Collection Date:

9/5/2013

0729h

Received Date:

9/6/2013 1145h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/12/2013 2247h	E300.0	10.0	54.4	
Nitrate/Nitrite (as N)	mg/L		9/12/2013 1921h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID: Client Sample ID: TW4-16_09052013

1309103-016C

Collection Date:

9/5/2013 0729h

Received Date:

9/6/2013 1145h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/9/2013 1849h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qua
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	56.8	50.00	114	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	48.9	50.00	97.8	80-128	
Surr: Dibromofluoromethane	1868-53-7	53.2	50.00	106	80-124	
Surr: Toluene-d8	2037-26-5	49.4	50.00	98.9	77-129	

Kyle F. Gross Laboratory Director

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

3rd Quarter Chloroform 2013

Project: Lab Sample ID:

1309103-009

Client Sample ID: MW-32 09042013 **Collection Date:**

9/4/2013 1240h

Received Date:

9/6/2013 1145h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyz		Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/12/2013	1743h	E300.0	10.0	33.0	
Nitrate/Nitrite (as N)	mg/L		9/12/2013	1912h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 9/18/2013 Page 15 of 55

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309103-009C

Client Sample ID: MW-32 09042013

Collection Date:

9/4/2013 1240h

Received Date:

9/6/2013 1145h Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/9/2013 2220h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

urrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	56.7	50.00	113	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	47.6	50.00	95.2	80-128	
Surr: Dibromofluoromethane	1868-53-7	52.1	50.00	104	80-124	
Surr: Toluene-d8	2037-26-5	46.2	50.00	92.3	77-129	

Kyle F. Gross Laboratory Director

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309103-020

Client Sample ID: TW4-18_09052013

Collection Date:

9/5/2013 0815h

Received Date:

9/6/2013 1145h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/13/2013 0028h	E300.0	5.00	36.2	
Nitrate/Nitrite (as N)	mg/L		9/12/2013 1931h	E353.2	1.00	12.1	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309103-020C

Client Sample ID: TW4-18_09052013 **Collection Date:**

9/5/2013 0815h

Received Date: 9/6/2013

1145h

VOAs by GC/MS Method 8260C/5030C

Analytical Results

Analyzed: 9/9/2013 2006h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

Test Code: 8260-W

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result Qual	
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	41.0	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	55.5	50.00	I11	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	46.9	50.00	93.9	80-128	
Surr: Dibromofluoromethane	1868-53-7	53.0	50.00	106	80-124	
Surr: Toluene-d8	2037-26-5	46.7	50.00	93.4	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 9/18/2013 Page 46 of 55

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309103-005

Client Sample ID: TW4-19 09032013

Collection Date:

9/3/2013 1030h

Received Date:

9/6/2013 1145h

Analytical Results

	463	West	3600	South
Salt	Lake	City,	UT	84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/12/2013 144	5h E300.0	50.0	179	
Nitrate/Nitrite (as N)	mg/L		9/12/2013 185	9h E353.2	1.00	17.6	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

3rd Quarter Chloroform 2013

Project: Lab Sample ID: 1309103-005C

Collection Date:

9/3/2013 1030h

Received Date: 9/6/2013 1145h

Client Sample ID: TW4-19 09032013

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/9/2013 2103h

Units: µg/L

Dilution Factor: 50

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha OA Officer

Compound			CAS umber	Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	50.0	8,100	974
Surrogate	CAS	Result	Amount Spik	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	2,820	2,500	113	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	2,340	2,500	93.7	80-128	
Surr: Dibromofluoromethane	1868-53-7	2,720	2,500	109	80-124	
Surr: Toluene-d8	2037-26-5	2,340	2,500	93.8	77-129	

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 9/9/2013 1105h

Dilution Factor: 1 Units: µg/L

Method:

SW8260C

Compound		Number F	Limit	Result	Qual
Carbon tetrachloride		56-23-5	1.00	20.7	
Chloromethane		74-87-3	1.00	< 1.00	
Methylene chloride		75-09-2	1.00	< 1.00	
Surrogate	CAS	Result Amount Spike	d % REC	Limits	Qual

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	55.0	50.00	110	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	44.6	50.00	89.3	80-128	
Surr: Dibromofluoromethane	1868-53-7	51.1	50.00	102	80-124	
Surr: Toluene-d8	2037-26-5	47.0	50.00	94.1	77-129	

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309103-008

Client Sample ID: TW4-20_09032013

/2013 1315h

Collection Date: Received Date:

9/3/2013 9/6/2013

1145h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyz		Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/12/2013	1717h	E300.0	50.0	260	
Nitrate/Nitrite (as N)	mg/L		9/12/2013	1911h	E353.2	1.00	8.65	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309103-008C Client Sample ID: TW4-20 09032013

Collection Date:

9/3/2013 1315h

9/6/2013

Received Date: Analytical Results 1145h

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/10/2013 1657h

Units: µg/L

Dilution Factor: 500

Method:

SW8260C

Test Code: 8260-W

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Compound Nur			CAS umber	Reporting Limit	Analytical Result	Qual
		7-66-3	500	26,800	~	
Surrogate	te CAS Result Amount		Amount Spik	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	28,500	25,000	114	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	23,600	25,000	94.4	80-128	
Surr: Dibromofluoromethane	1868-53-7	27,000	25,000	108	80-124	
Surr: Toluene-d8	2037-26-5	23,800	25,000	95.3	77-129	

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 9/9/2013 1259h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

Compound	CAS Number	Reporting Limit	Analytical Result	Qua
Carbon tetrachloride	56-23-5	1.00	25.7	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	2.14	
	E 1 2		8 8	12

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	50.6	50.00	101	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	46.4	50.00	92.9	80-128	
Surr: Dibromofluoromethane	1868-53-7	45.0	50.00	90.0	80-124	
Surr: Toluene-d8	2037-26-5	48.9	50.00	97.8	77-129	

Client:

Energy Fuels Resources, Inc. 3rd Quarter Chloroform 2013

Contact: Garrin Palmer

Project:

Lab Sample ID: 1309255-002

Client Sample ID: TW4-21 09122013

Collection Date:

9/12/2013 0711h

Received Date:

9/13/2013 1015h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/18/2013 1912h	E300.0	50.0	207	
Nitrate/Nitrite (as N)	mg/L		9/17/2013 2059h	E353.2	1.00	10.3	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 9/24/2013 Page 6 of 29

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013 1309255-002C

Lab Sample ID:

Client Sample ID: TW4-21 09122013

Collection Date:

9/12/2013 0711h

Received Date:

9/13/2013 1015h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/16/2013 2037h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	2.13	
Chloroform	67-66-3	1.00	244	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	56.1	50.00	112	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.4	50.00	101	80-128	
Surr: Dibromofluoromethane	1868-53-7	53.3	50.00	107	80-124	
Surr: Toluene-d8	2037-26-5	49.7	50.00	99.5	77-129	

Kyle F. Gross Laboratory Director

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

1309103-007

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

Client Sample ID: TW4-22_09032013 **Collection Date:** 9/3/2013

Received Date:

9/6/2013 1145h

1305h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analy	-	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/12/2013	1651h	E300.0	100	487	
Nitrate/Nitrite (as N)	mg/L		9/12/2013	1933h	E353.2	10.0	29.7	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309103-007C

Client Sample ID: TW4-22 09032013

Collection Date:

9/3/2013 1305h

Received Date:

9/6/2013 1145h Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/9/2013 0851h

Units: µg/L

Dilution Factor: 100

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound			CAS umber	Reporting Limit	Analytical Result	Qual
Chloroform		67-66-3		100	9,640	-
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	5,410	5,000	108	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	4,590	5,000	91.8	80-128	
Surr: Dibromofluoromethane	1868-53-7	5,290	5,000	106	80-124	
Surr: Toluene-d8	2037-26-5	4,780	5,000	95.6	77-129	

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 9/9/2013 0813h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

Compound		CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride		56-23-5	1.00	3.25	
Chloromethane		74-87-3	1.00	< 1.00	
Methylene chloride		75-09-2	1.00	< 1.00	
Surrogate	CAS	Result Amount Snik	ed % REC	Limits	Qual

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	54.0	50.00	108	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	45.2	50.00	90.4	80-128	
Surr: Dibromofluoromethane	1868-53-7	49.6	50.00	99.2	80-124	
Surr: Toluene-d8	2037-26-5	48,0	50.00	95.9	77-129	

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309103-013

Client Sample ID Collection Date:

Client Sample ID: TW4-23_09052013

Collection Date:

9/5/2013 0704h

Received Date:

9/6/2013 1145h

Analytical Results

463 West 3600 South 3alt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyz		Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/12/2013	2015h	E300.0	10.0	48.0	
Nitrate/Nitrite (as N)	mg/L		9/12/2013	1917h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

3-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

CAS

Number

56-23-5

67-66-3

74-87-3

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID: **Client Sample ID:** TW4-23 09052013

1309103-013C

Collection Date:

9/5/2013 0704h

Received Date:

9/6/2013 1145h

Test Code: 8260-W

Oual

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/9/2013 1454h

Units: µg/L

Compound

Chloroform

Dilution Factor: 1

Method:

Reporting

Limit

1.00

1.00

1.00

SW8260C

Analytical

Result

< 1.00

< 1.00

< 1.00

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

e-mail: awal@awal-labs.com

Fax: (801) 263-8687

web: www.awal-labs.com

Chloromethane Methylene chloride

Surr: Toluene-d8

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Carbon tetrachloride

75-09-2 1.00 < 1.00CAS Surrogate Result **Amount Spiked** % REC Limits

52.7

44.9

50.1

46.0

17060-07-0

460-00-4

1868-53-7

2037-26-5

Qual 50.00 105 72-151 50.00 89.9 80-128 100 80-124 50.00 50.00 92.0 77-129

Kyle F. Gross Laboratory Director

Jose Rocha

QA Officer

Report Date: 9/18/2013 Page 39 of 55

Contact: Garrin Palmer

Client: Energy Fuels Resources, Inc.

Project: 3rd Quarter Chloroform 2013

Lab Sample ID: 1309103-002

 Client Sample ID:
 TW4-24_09032013

 Collection Date:
 9/3/2013
 1255h

 Received Date:
 9/6/2013
 1145h

Analytical Results

463 West 3600 South 3alt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyz	2	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/12/2013	1329h	E300.0	100	998	
Nitrate/Nitrite (as N)	mg/L		9/12/2013	1855h	E353.2	10.0	32.6	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 9/18/2013 Page 8 of 55

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309103-002C

Client Sample ID: TW4-24_09032013

Collection Date:

9/3/2013 1255h

Received Date:

9/6/2013 1145h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/9/2013 1007h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	21.8	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	54.1	50.00	108	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	45.1	50.00	90.2	80-128	
Surr: Dibromofluoromethane	1868-53-7	50.7	50.00	101	80-124	
Surr: Toluene-d8	2037-26-5	47.2	50.00	94.3	77-129	

Kyle F. Gross Laboratory Director

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309103-001

Collection Date:

Client Sample ID: TW4-25_09032013

9/3/2013 1240h

Received Date:

9/6/2013 1145h

Analytical Results

463 West 3600 South 3alt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/12/2013 1213h	E300.0	50.0	119	
Nitrate/Nitrite (as N)	mg/L		9/12/2013 1853h	E353.2	1.00	5.69	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309103-001C **Client Sample ID: TW4-25 09032013** 9/3/2013 1240h

Collection Date: Received Date:

9/6/2013 1145h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/9/2013 2201h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qua
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	57.2	50,00	114	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	48.7	50.00	97.3	80-128	
Surr: Dibromofluoromethane	1868-53-7	52.8	50.00	106	80-124	
Surr: Toluene-d8	2037-26-5	47.5	50.00	95.0	77-129	

Kyle F. Gross Laboratory Director

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project: Lab Sample ID: 3rd Quarter Chloroform 2013

Client Sample ID: TW4-26 09052013

1309103-017

Collection Date:

9/5/2013 0748h

Received Date:

9/6/2013 1145h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Dat Analy	_	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/12/2013	2312h	E300.0	5.00	17.6	
Nitrate/Nitrite (as N)	mg/L		9/12/2013	1926h	E353.2	1.00	11.7	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

≥-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Project: Lab Sample ID: 3rd Quarter Chloroform 2013

Client Sample ID: TW4-26_09052013

1309103-017C

Collection Date:

9/5/2013 0748h

Received Date:

9/6/2013 1145h

Test Code: 8260-W VOAs by GC/MS Method 8260C/5030C

Contact: Garrin Palmer

Analytical Results

Analyzed: 9/9/2013 1908h

Units: µg/L 463 West 3600 South

Dilution Factor: 1

SW8260C Method:

Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	2.81	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	55.4	50.00	111	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	47.2	50.00	94.5	80-128	
Surr: Dibromofluoromethane	1868-53-7	52.0	50.00	104	80-124	
Surr: Toluene-d8	2037-26-5	47.4	50.00	94.8	77-129	

Kyle F. Gross Laboratory Director

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1308555-005 Client Sample ID: TW4-27 08292013

Collection Date:

8/29/2013 0735h

Received Date:

8/30/2013 0945h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Dat Analy	-	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/3/2013	1842h	E300.0	5.00	19.0	
Nitrate/Nitrite (as N)	mg/L		8/30/2013	1635h	E353.2	10.0	27.2	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 9/11/2013 Page 9 of 31

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1308555-005C

Client Sample ID; TW4-27_08292013 **Collection Date:**

8/29/2013 0735h

Received Date:

8/30/2013 0945h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 8/30/2013 1527h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	54.2	50.00	108	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	46.8	50.00	93.7	80-128	
Surr: Dibromofluoromethane	1868-53-7	49.5	50.00	99.0	80-124	
Surr: Toluene-d8	2037-26-5	47.6	50.00	95.2	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **OA** Officer

> > Report Date: 9/11/2013 Page 18 of 31

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1308555-006

Client Sample ID: TW4-28 08292013

Collection Date:

8/29/2013 0743h

Received Date:

8/30/2013 0945h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Dat Analy	-	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/3/2013	1905h	E300.0	10.0	45.3	
Nitrate/Nitrite (as N)	mg/L		8/30/2013	1636h	E353.2	1.00	17.3	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID: Client Sample ID: TW4-28 08292013

1308555-006C

Collection Date:

8/29/2013 0743h

Received Date:

8/30/2013 0945h

Analytical Results

Test Code: 8260-W VOAs by GC/MS Method 8260C/5030C

Analyzed: 8/30/2013 1546h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 ∋-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result Qua	ıl
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	57.0	50.00	114	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	49.5	50.00	99.0	80-128	
Surr: Dibromofluoromethane	1868-53-7	51.6	50.00	103	80-124	
Surr: Toluene-d8	2037-26-5	49.2	50.00	98.3	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 9/11/2013 Page 19 of 31

Contact: Garrin Palmer

Client: Energy Fuels Resources, Inc.

Project: 3rd Quarter Chloroform 2013

Lab Sample ID: 1309255-001

Collection Date: 7W4-29_09122013 **Collection Date:** 9/12/2013 0657h

Received Date: 9/13/2013 1015h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/18/2013 1848h	E300.0	10.0	20.5	
Nitrate/Nitrite (as N)	mg/L		9/17/2013 2115h	E353.2	5.00	31.1	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

⇒-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 9/24/2013 Page 5 of 29

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013 Lab Sample ID: 1309255-001C

Client Sample ID: TW4-29 09122013

Collection Date:

9/12/2013 0657h

Received Date:

9/13/2013 1015h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/16/2013 2018h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	C/S	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	060-07-0	55.7	50.00	111	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	51.2	50.00	102	80-128	
Surr: Dibromofluoromethane	1868-53-7	51.8	50.00	104	80-124	
Surr: Toluene-d8	2037-26-5	49.5	50.00	98.9	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 9/24/2013 Page 13 of 29

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform Re-Sample

Lab Sample ID:

1309526-001

Client Sample ID: TW4-29_09262013

Collection Date: Received Date:

9/26/2013 713h

9/27/2013 1010h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/27/2013 1544h	E300.0	5.00	41.4	
Nitrate/Nitrite (as N)	mg/L		9/27/2013 1857h	E353.2	1.00	4.18	•

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

CAS

Number

67-66-3

Amount Spiked

500.0

500.0

500.0

500.0

Result

523

562

542

547

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform Re-Sample

Lab Sample ID: Client Sample ID: TW4-29 09262013

1309526-001C

Collection Date:

9/26/2013 713h

Received Date:

9/27/2013 1010h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/27/2013 1307h

Units: µg/L

Compound

Chloroform

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Surrogate

Dilution Factor: 10

Method:

Reporting

Limit

10.0

% REC

105

112

108

109

SW8260C

Analytical

Result

246

Limits

72-151

80-128

80-124

77-129

Qual

Qual

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed:

Surr: Toluene-d8

9/27/2013 1158h

Units: µg/L

Dilution Factor: 1

CAS

17060-07-0

460-00-4

1868-53-7

2037-26-5

Method:

SW8260C

Kyle F. Gross Laboratory Director

Compound		CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride		56-23-5	1.00	< 1.00	
Chloromethane		74-87-3	1.00	< 1.00	
Methylene chloride		75-09-2	1.00	< 1.00	
Surrogate	CAS	Result Amount S	piked % REC	Limits	Oual

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	52.0	50.00	104	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	56.8	50.00	114	80-128	
Surr: Dibromofluoromethane	1868-53-7	54.6	50.00	109	80-124	
Surr: Toluene-d8	2037-26-5	56.0	50.00	112	77-129	

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1308555-007

Client Sample ID: TW4-30 08292013 **Collection Date:**

8/29/2013 0751h

Received Date:

8/30/2013 0945h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzo		Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/3/2013 2	2038h	E300.0	5.00	36.3	
Nitrate/Nitrite (as N)	mg/L		8/30/2013	1638h	E353.2	0.100	0.952	

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID: Client Sample ID: TW4-30 08292013

1308555-007C

Collection Date:

8/29/2013 0751h

Received Date:

8/30/2013 0945h

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 8/30/2013 1605h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

Test Code: 8260-W

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	57.9	50.00	116	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.9	50.00	102	80-128	
Surr: Dibromofluoromethane	1868-53-7	53.0	50.00	106	80-124	
Surr: Toluene-d8	2037-26-5	49,6	50.00	99.2	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 9/11/2013 Page 20 of 31

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309103-012

Client Sample ID: TW4-31 09052013

Collection Date:

9/5/2013 0655h

Received Date:

9/6/2013 1145h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analy	-	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/12/2013	1950h	E300.0	5.00	29.4	
Nitrate/Nitrite (as N)	mg/L		9/12/2013	1916h	E353.2	0.100	1.10	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID: **Client Sample ID:** TW4-31 09052013

1309103-012C

Collection Date: Received Date:

9/5/2013 0655h 9/6/2013 1145h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/9/2013 1435h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qua
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	54.2	50.00	108	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	47.0	50.00	93.9	80-128	
Surr: Dibromofluoromethane	1868-53-7	51.3	50.00	103	80-124	
Surr: Toluene-d8	2037-26-5	47.2	50.00	94.4	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 9/18/2013 Page 38 of 55

Client:

Energy Fuels Resources, Inc. 3rd Quarter Chloroform 2013

Contact: Garrin Palmer

Project: Lab Sample ID:

1309255-008

Client Sample ID: TW4-60_ 09122013

Collection Date:

9/12/2013 0845h

Received Date:

9/13/2013 1015h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/18/2013 2218	E300.0	1.00	< 1.00	
Nitrate/Nitrite (as N)	mg/L		9/17/2013 2108	E353.2	0.100	< 0.100	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

3rd Quarter Chloroform 2013

Project: Lab Sample ID:

1309255-008C

Client Sample ID: TW4-60 09122013

Collection Date: Received Date:

9/12/2013 0845h 9/13/2013 1015h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/17/2013 1508h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

Salt Lake City, UT 84115

463 West 3600 South

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qua
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	56.4	50.00	113	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	53.4	50.00	107	80-128	
Surr: Dibromofluoromethane	1868-53-7	51.5	50.00	103	80-124	
Surr: Toluene-d8	2037-26-5	50.7	50.00	101	77-129	

Kyle F. Gross Laboratory Director

Contact: Garrin Palmer

Client: Energy Fuels Resources, Inc.

Project: 3rd Quarter Chloroform 2013

Lab Sample ID: 1308555-008

 Client Sample ID:
 TW4-65_08292013

 Collection Date:
 8/29/2013
 0700h

 Received Date:
 8/30/2013
 0945h

Analytical Results

463 West 3600 South 3alt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analy	_	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/3/2013	2101h	E300.0	10.0	24.2	
Nitrate/Nitrite (as N)	mg/L		8/30/2013	1643h	E353.2	1.00	5.98	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 9/11/2013 Page 12 of 31

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1308555-008C **Client Sample ID:** TW4-65 08292013

Collection Date:

8/29/2013 0700h

Received Date:

8/30/2013 0945h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 8/30/2013 1625h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result Qual	
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	56.8	50.00	114	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	49.2	50.00	98.4	80-128	
Surr: Dibromofluoromethane	1868-53-7	52.1	50.00	104	80-124	
Surr: Toluene-d8	2037-26-5	49.0	50.00	98.0	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha OA Officer

> > Report Date: 9/11/2013 Page 21 of 31

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013 1309103-011

Lab Sample ID:

Client Sample ID: TW4-70 09052013 **Collection Date:**

9/5/2013 0710h

Received Date:

9/6/2013 1145h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		9/12/2013 1924h	E300.0	5.00	47.7	
Nitrate/Nitrite (as N)	mg/L		9/12/2013 1935h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID: Client Sample ID: TW4-70_09052013

1309103-011C

Collection Date:

9/5/2013 0710h

Received Date:

9/6/2013 1145h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/9/2013 2258h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

463 West 3600 South 3alt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

e-mail: awal@awal-labs.com

Fax: (801) 263-8687

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	57.1	50.00	114	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	47.0	50.00	94.0	80-128	
Surr: Dibromofluoromethane	1868-53-7	52.9	50.00	106	80-124	
Surr: Toluene-d8	2037-26-5	47.5	50.00	95.0	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 9/18/2013 Page 37 of 55

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Sample ID: 1309103-021A Client Sample ID: Trip Blank

Collection Date:

9/3/2013 9/6/2013

Received Date:

1145h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/9/2013 2317h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

Salt Lake City, UT 84115

463 West 3600 South

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	57.7	50.00	115	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	48.0	50.00	95.9	80-128	
Surr: Dibromofluoromethane	1868-53-7	53.4	50.00	107	80-124	
Surr: Toluene-d8	2037-26-5	47.6	50.00	95.2	77-129	

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Lab Sample ID:

1309255-009A

9/13/2013 1015h

Client Sample ID: Trip Blank

Collection Date: Received Date:

9/12/2013

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/16/2013 2245h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	57.1	50.00	114	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	51.1	50.00	102	80-128	
Surr: Dibromofluoromethane	1868-53-7	52.3	50.00	105	80-124	
Surr: Toluene-d8	2037-26-5	50.1	50.00	100	77-129	

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

3rd Quarter Chloroform Re-Sample

Lab Sample ID:

Client Sample ID: Trip Blank

Collection Date:

9/26/2013

Test Code: 8260-W

Received Date:

9/27/2013 1010h

1309526-002A

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 9/27/2013 1140h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

463 West 3600 South 3alt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	49.9	50.00	99.7	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	57.4	50.00	115	80-128	
Surr: Dibromofluoromethane	1868-53-7	53.5	50.00	107	80-124	
Surr: Toluene-d8	2037-26-5	56.0	50.00	112	77-129	

Kyle F. Gross **Laboratory Director**

> Jose Rocha **QA** Officer

> > Report Date: 9/30/2013 Page 7 of 15

Client: **Project:** Energy Fuels Resources, Inc.

3rd Quarter Chloroform 2013

Lab Sample ID:

1308555-010A

Client Sample ID: Trip Blank

Collection Date:

8/28/2013

8/30/2013 0945h

Received Date:

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 8/30/2013 1703h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South 3alt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result Qual	
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

urrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	57.4	50.00	115	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	49.7	50.00	99.4	80-128	
Surr: Dibromofluoromethane	1868-53-7	52.4	50.00	105	80-124	
Surr: Toluene-d8	2037-26-5	49.5	50.00	99.0	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 9/11/2013 Page 23 of 31

Garrin Palmer Energy Fuels Resources, Inc. 6425 S. Hwy 191 Blanding, UT 84511

TEL: (435) 678-2221

RE: 3rd Quarter Chloroform 2013

Dear Garrin Palmer:

Lab Set ID: 1309103

463 West 3600 South Salt Lake City, UT 84115

American West Analytical Laboratories received 21 sample(s) on 9/6/2013 for the analyses presented in the following report.

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

American West Analytical Laboratories (AWAL) is accredited by The National Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is state accredited in Colorado, Idaho, New Mexico, and Missouri.

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Thank You.

Kyle F. Digitally signed by Kyle F. Gross DN: cn=Kyle F. Gross, o=AWAL, ou=AWAL-Laboratory Director, email=kyle@awal-labs.com, c=US Date: 2013.09.18 14:00:04 -06'00'

Approved by:

Laboratory Director or designee

SAMPLE SUMMARY

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Set ID:

1309103

Date Received:

9/6/2013 1145h

	Lab Sample ID	Client Sample ID	Date Colle	cted	Matrix	Analysis
463 West 3600 South	1309103-001A	TW4-25_09032013	9/3/2013	1240h	Aqueous	Anions, E300.0
Salt Lake City, UT 84115	1309103-001B	TW4-25_09032013	9/3/2013	1240h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1309103-001C	TW4-25_09032013	9/3/2013	1240h	Aqueous	VOA by GC/MS Method 8260C/5030C
Phone: (801) 263-8686	1309103-002A	TW4-24_09032013	9/3/2013	1255h	Aqueous	Anions, E300.0
, ,	1309103-002B	TW4-24_09032013	9/3/2013	1255h	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686 Fax: (801) 263-8687	1309103-002C	TW4-24_09032013	9/3/2013	1255h	Aqueous	VOA by GC/MS Method 8260C/5030C
e-mail: awal@awal-labs.com	1309103-003A	TW4-04_09032013	9/3/2013	1347h	Aqueous	Anions, E300.0
	1309103-003B	TW4-04_09032013	9/3/2013	1347h	Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	1309103-003C	TW4-04_09032013	9/3/2013	1347h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1309103-004A	MW-04_09032013	9/3/2013	1335h	Aqueous	Anions, E300.0
Valo E Casa	1309103-004B	MW-04_09032013	9/3/2013	1335h	Aqueous	Nitrite/Nitrate (as N), E353.2
Kyle F. Gross Laboratory Director	1309103-004C	MW-04_09032013	9/3/2013	1335h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1309103-005A	TW4-19_09032013	9/3/2013	1030h	Aqueous	Anions, E300.0
Jose Rocha	1309103-005B	TW4-19_09032013	9/3/2013	1030h	Aqueous	Nitrite/Nitrate (as N), E353.2
QA Officer	1309103-005C	TW4-19_09032013	9/3/2013	1030h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1309103-006A	MW-26_09032013	9/3/2013	1325h	Aqueous	Anions, E300.0
	1309103-006B	MW-26_09032013	9/3/2013	1325h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1309103-006C	MW-26_09032013	9/3/2013	1325h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1309103-007A	TW4-22_09032013	9/3/2013	1305h	Aqueous	Anions, E300.0
	1309103-007B	TW4-22_09032013	9/3/2013	1305h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1309103-007C	TW4-22_09032013	9/3/2013	1305h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1309103-008A	TW4-20_09032013	9/3/2013	1315h	Aqueous	Anions, E300.0
	1309103-008B	TW4-20_09032013	9/3/2013	1315h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1309103-008C	TW4-20_09032013	9/3/2013	1315h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1309103-009A	MW-32_09042013	9/4/2013	1240h	Aqueous	Anions, E300.0
	1309103-009B	MW-32_09042013	9/4/2013	1240h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1309103-009C	MW-32_09042013	9/4/2013	1240h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1309103-010A	TW4-05R_09042013	9/4/2013	1407h	Aqueous	Anions, E300.0
	1309103-010B	TW4-05R_09042013	9/4/2013	1407h	Aqueous	Nitrite/Nitrate (as N), E353.2

Client: Project: Energy Fuels Resources, Inc. 3rd Quarter Chloroform 2013

Lab Set ID:

1309103

Date Received:

9/6/2013 1145h

Contact: Garrin Palmer

	Lab Sample ID	Client Sample ID	Date Colle	cted	Matrix	Analysis
462 W + 2600 G + 4	1309103-010C	TW4-05R_09042013	9/4/2013	1407h	Aqueous	VOA by GC/MS Method 8260C/5030C
463 West 3600 South	1309103-011A	TW4-70_09052013	9/5/2013	0710h	Aqueous	Anions, E300.0
Salt Lake City, UT 84115	1309103-011B	TW4-70_09052013	9/5/2013	0710h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1309103-011C	TW4-70_09052013	9/5/2013	0710h	Aqueous	VOA by GC/MS Method 8260C/5030C
Dhama (901) 262 9696	1309103-012A	TW4-31_09052013	9/5/2013	0655h	Aqueous	Anions, E300.0
Phone: (801) 263-8686	1309103-012B	TW4-31_09052013	9/5/2013	0655h	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686 Fax: (801) 263-8687	1309103-012C	TW4-31_09052013	9/5/2013	0655h	Aqueous	VOA by GC/MS Method 8260C/5030C
e-mail: awal@awal-labs.com	1309103-013A	TW4-23_09052013	9/5/2013	0704h	Aqueous	Anions, E300.0
	1309103-013B	TW4-23_09052013	9/5/2013	0704h	Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	1309103-013C	TW4-23_09052013	9/5/2013	0704h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1309103-014A	TW4-08_09052013	9/5/2013	0710h	Aqueous	Anions, E300.0
Kyle F. Gross	1309103-014B	TW4-08_09052013	9/5/2013	0710h	Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	1309103-014C	TW4-08_09052013	9/5/2013	0710h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1309103-015A	TW4-09_09052013	9/5/2013	0723h	Aqueous	Anions, E300.0
Jose Rocha	1309103-015B	TW4-09_09052013	9/5/2013	0723h	Aqueous	Nitrite/Nitrate (as N), E353.2
QA Officer	1309103-015C	TW4-09_09052013	9/5/2013	0723h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1309103-016A	TW4-16_09052013	9/5/2013	0729h	Aqueous	Anions, E300.0
	1309103-016B	TW4-16_09052013	9/5/2013	0729h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1309103-016C	TW4-16_09052013	9/5/2013	0729h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1309103-017A	TW4-26_09052013	9/5/2013	0748h	Aqueous	Anions, E300.0
	1309103-017B	TW4-26_09052013	9/5/2013	0748h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1309103-017C	TW4-26_09052013	9/5/2013	0748h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1309103-018A	TW4-06_09052013	9/5/2013	0757h	Aqueous	Anions, E300.0
	1309103-018B	TW4-06_09052013	9/5/2013	0757h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1309103-018C	TW4-06_09052013	9/5/2013	0757h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1309103-019A	TW4-05_09052013	9/5/2013	0805h	Aqueous	Anions, E300.0
	1309103-019B	TW4-05_09052013	9/5/2013	0805h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1309103-019C	TW4-05_09052013	9/5/2013	0805h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1309103-020A	TW4-18_09052013	9/5/2013	0815h	Aqueous	Anions, E300.0
	1309103-020B	TW4-18_09052013	9/5/2013	0815h	Aqueous	Nitrite/Nitrate (as N), E353.2

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Set ID:

1309103

Date Received:

9/6/2013 1145h

Lab Sample ID	Client Sample ID	Date Colle	ected	Matrix	Analysis
1309103-020C	TW4-18_09052013	9/5/2013	0815h	Aqueous	VOA by GC/MS Method 8260C/5030C
1309103-021A	Trip Blank	9/3/2013		Aqueous	VOA by GC/MS Method 8260C/5030C

Contact: Garrin Palmer

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Inorganic Case Narrative

Client: Contact: Energy Fuels Resources, Inc.

Garrin Palmer

Project: Lab Set ID: 3rd Ouarter Chloroform 2013

1309103

463 West 3600 South 3alt Lake City, UT 84115 **Sample Receipt Information:**

Date of Receipt:

9/6/2013

Date(s) of Collection:

9/3, 9/4, & 9/5/2013

Sample Condition:

Intact

C-O-C Discrepancies:

None

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

samples were performed within the method holding times. All samples were properly preserved.

Holding Time and Preservation Requirements: The analysis and preparation of all

Preparation and Analysis Requirements: The samples were analyzed following the methods stated on the analytical reports.

Analytical QC Requirements: All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Kyle F. Gross Laboratory Director

Batch QC Requirements: MB, LCS, MS, MSD, RPD:

Jose Rocha QA Officer Method Blanks (MB): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Samples (LCS): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicates (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, indicating no apparent matrix interferences.

Corrective Action: None required.

Volatile Case Narrative

Client: Contact: Project: Energy Fuels Resources, Inc.

Garrin Palmer

3rd Quarter Chloroform 2013

1309103

Lab Set ID:

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha

QA Officer

Sample Receipt Information:

Date of Receipt:

Date(s) of Collection:

Sample Condition: C-O-C Discrepancies:

Method: Analysis: 9/6/2013

9/3, 9/4, & 9/5/2013

Intact None

SW-846 8260C/5030C

Volatile Organic Compounds

General Set Comments: Multiple target analytes were observed above reporting limits.

Holding Time and Preservation Requirements: All samples were received in appropriate containers and properly preserved. The analysis and preparation of all samples were performed within the method holding times following the methods stated on the analytical reports.

Analytical QC Requirements: All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Batch QC Requirements: MB, LCS, MS, MSD, RPD, and Surrogates:

Method Blanks (MBs): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Sample (LCSs): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicate (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, indicating no apparent matrix interferences.

Surrogates: All surrogate recoveries were within established limits.

Corrective Action: None required.

A

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1309103

Project: 3rd Quarter Chloroform 2013

Contact: Garrin Palmer

Dept: WC **QC Type:** LCS

	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
LCS-R59066 300.0-W	Date Analyzed:	09/12/2013	1148h										
	5.02	mg/L	E300.0	0.0114	1.00	5.000	0	100	90 - 110				
LCS-R59048 NO2/NO3-W-353.2	Date Analyzed:	09/12/2013	1852h										
N)	0.969	mg/L	E353.2	0.00252	0.100	1.000	0	96.9	90 - 110				
]	300.0-W LCS-R59048 NO2/NO3-W-353.2	LCS-R59066 Date Analyzed: 300.0-W 5.02 LCS-R59048 Date Analyzed: NO2/NO3-W-353.2	LCS-R59066 Date Analyzed: 09/12/2013 300.0-W 5.02 mg/L LCS-R59048 Date Analyzed: 09/12/2013 NO2/NO3-W-353.2	LCS-R59066 Date Analyzed: 09/12/2013 1148h 300.0-W 5.02 mg/L E300.0 LCS-R59048 Date Analyzed: 09/12/2013 1852h NO2/NO3-W-353.2 09/12/2013 1852h	LCS-R59066 Date Analyzed: 09/12/2013 1148h 300.0-W 5.02 mg/L E300.0 0.0114 LCS-R59048 Date Analyzed: 09/12/2013 1852h NO2/NO3-W-353.2	Result Units Method MDL Limit	Result Units Method MDL Limit Spiked	Result Units Method MDL Limit Spiked Amount	Result Units Method MDL Limit Spiked Amount %REC	Result Units Method MDL Limit Spiked Amount %REC Limits	Result Units Method MDL Limit Spiked Amount %REC Limits Amt	Result Units Method MDL Limit Spiked Amount %REC Limits Amt % RPD	Result Units Method MDL Limit Spiked Amount %REC Limits Amt %RPD Limit LCS-R59066 300.0-W 5.02 mg/L E300.0 0.0114 1.00 5.000 0 100 90 - 110 LCS-R59048 NO2/NO3-W-353.2 NO2/N

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

3rd Quarter Chloroform 2013

Client:

Project:

Lab Set ID: 1309103

Contact:

Garrin Palmer

Dept:

WC

QC Type: MBLK

pike Ref. Amount %REC	Amount Spiked	C Limits	RPD Ref. Amt % R	RPD PD Limit Qual

American West

Lab Set ID: 1309103

Client:

Project:

Energy Fuels Resources, Inc.

3rd Quarter Chloroform 2013

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Garrin Palmer

Dept: WC **QC Type:** MS

	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
1309103-001AMS 300.0-W	Date Analyzed:	09/12/2013	1238h										
	2,540	mg/L	E300.0	5.70	500	2,500	119	96.9	90 - 110				
1309103-010AMS 300.0-W	Date Analyzed:	09/12/2013	1834h										
	4.96	mg/L	E300.0	0.0114	1.00	5.000	0.043	98.4	90 - 110				
1309103-001BMS NO2/NO3-W-353.2	Date Analyzed:	09/12/2013	1902h										
N)	16.6	mg/L	E353.2	0.0252	1.00	10.00	5.69	110	90 - 110				
1309103-015BMS NO2/NO3-W-353.2	Date Analyzed:	09/12/2013	1936h										
s N)	14.8	mg/L	E353.2	0.0252	1.00	10.00	4.03	107	90 - 110				
	1309103-010AMS 300.0-W 1309103-001BMS NO2/NO3-W-353.2 s N) 1309103-015BMS	1309103-001AMS 300.0-W 2,540 1309103-010AMS 300.0-W 4.96 1309103-001BMS NO2/NO3-W-353.2 S N) 16.6 1309103-015BMS NO2/NO3-W-353.2 Date Analyzed: Date Analyzed: Date Analyzed:	1309103-001AMS Date Analyzed: 09/12/2013 300.0-W 2,540 mg/L 1309103-010AMS Date Analyzed: 09/12/2013 300.0-W 4.96 mg/L 1309103-001BMS Date Analyzed: 09/12/2013 NO2/NO3-W-353.2 Date Analyzed: 09/12/2013 1309103-015BMS Date Analyzed: 09/12/2013 NO2/NO3-W-353.2 Date Analyzed: 09/12/2013	1309103-001AMS Date Analyzed: 09/12/2013 1238h 300.0-W 2,540 mg/L E300.0 1309103-010AMS Date Analyzed: 09/12/2013 1834h 300.0-W 4.96 mg/L E300.0 1309103-001BMS Date Analyzed: 09/12/2013 1902h NO2/NO3-W-353.2 Date Analyzed: 09/12/2013 1936h NO2/NO3-W-353.2 Date Analyzed: 09/12/2013 1936h	1309103-001AMS 300.0-W 2,540 mg/L E300.0 5.70 1309103-010AMS Date Analyzed: 09/12/2013 1834h 300.0-W 4.96 mg/L E300.0 0.0114 1309103-001BMS Date Analyzed: 09/12/2013 1902h NO2/NO3-W-353.2 Date Analyzed: 09/12/2013 1936h NO2/NO3-W-353.2	Result Units Method MDL Limit	Result Units Method MDL Limit Spiked	Result Units Method MDL Limit Spiked Amount	Note Note	Note Note	No. No.	Note Note	Name

American West

Lab Set ID: 1309103

Client:

Project:

Energy Fuels Resources, Inc.

3rd Quarter Chloroform 2013

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact:

Garrin Palmer

Dept: WC

QC Type: MSD

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1309103-001AMSD 300.0-W	Date Analyzed:	09/12/2013	1304h										
Chloride		2,520	mg/L	E300.0	5.70	500	2,500	119	96.1	90 - 110	2540	0.778	20	
Lab Sample ID: Test Code:	1309103-010AMSD 300.0-W	Date Analyzed:	09/12/2013	1859h										
Chloride		5.11	mg/L	E300.0	0.0114	1.00	5.000	0.043	101	90 - 110	4.96	2.98	20	
Lab Sample ID: Test Code:	1309103-001BMSD NO2/NO3-W-353.2	Date Analyzed:	09/12/2013	1903h										
Nitrate/Nitrite (as	N)	16.1	mg/L	E353.2	0.0252	1.00	10.00	5.69	104	90 - 110	16.6	3.49	10	
Lab Sample ID: Test Code:	1309103-015BMSD NO2/NO3-W-353.2	Date Analyzed:	09/12/2013	1937h										
Nitrate/Nitrite (as	N)	14.5	mg/L	E353.2	0.0252	1.00	10.00	4.03	105	90 - 110	14.8	1.57	10	

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha OA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1309103

Client:

3rd Quarter Chloroform 2013 Project:

Garrin Palmer Contact: Dept: **MSVOA**

QC Type: LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: LCS VOC 090913A Test Code: 8260-W	Date Analyzed:	09/09/2013	0715h										
Chloroform	20.2	/1	SW8260C	0.277	2.00	20.00	0	101	(7 122				
	20.2	μg/L			2.00		0	101	67 - 132				
Methylene chloride	20.9	μg/L	SW8260C	0.155	2.00	20.00	0	105	32 - 185				
Surr: 1,2-Dichloroethane-d4	52.2	μg/L	SW8260C			50.00		104	76 - 138				
Surr: 4-Bromofluorobenzene	47.6	μg/L	SW8260C			50.00		95.1	77 - 121				
Surr: Dibromofluoromethane	51.6	μg/L	SW8260C			50.00		103	67 - 128				
Surr: Toluene-d8	48.4	μg/L	SW8260C			50.00		96.8	81 - 135				
Lab Sample ID: LCS VOC 090913B	Date Analyzed:	09/09/2013	1611h										
Test Code: 8260-W													
Chloroform	19.1	μg/L	SW8260C	0.277	2.00	20.00	0	95.4	67 - 132				
Methylene chloride	20.4	μg/L	SW8260C	0.155	2.00	20.00	0	102	32 - 185				
Surr: 1,2-Dichloroethane-d4	52.8	$\mu g/L$	SW8260C			50.00		106	76 - 138				
Surr: 4-Bromofluorobenzene	45.6	μg/L	SW8260C			50.00		91.3	77 - 121				
Surr: Dibromofluoromethane	52.2	μg/L	SW8260C			50.00		104	67 - 128				
Surr: Toluene-d8	48.4	μg/L	SW8260C			50.00		96.8	81 - 135				
Lab Sample ID: LCS VOC 091013A Test Code: 8260-W	Date Analyzed:	09/10/2013	0740h										
Chloroform	20.8	μg/L	SW8260C	0.277	2.00	20.00	0	104	67 - 132				
Methylene chloride	23.0	μg/L μg/L	SW8260C	0.155	2.00	20.00	0	115	32 - 185				
Surr: 1,2-Dichloroethane-d4	53.0	μg/L μg/L	SW8260C	0.155	2.00	50.00	· ·	106	76 - 138				
Surr: 4-Bromofluorobenzene	45.9	μg/L μg/L	SW8260C			50.00		91.8	77 - 121				
Surr: Dibromofluoromethane	52.0	μg/L μg/L	SW8260C			50.00		104	67 - 121				
Surr: Toluene-d8	47.0		SW8260C			50.00		94.0	81 - 135				
Suit. Totuche-uo	47.0	μg/L	3 W 0200C			30.00		94.0	81 - 133				

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha **OA** Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1309103

Client:

3rd Quarter Chloroform 2013 **Project:**

Garrin Palmer Contact:

Dept: **MSVOA** QC Type: MBLK

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB V Test Code: 8260-		Date Analyzed:	09/09/2013	0754h										
Carbon tetrachloride		< 1.00	μg/L	SW8260C	0.137	1.00								
Chloroform		< 1.00	μg/L	SW8260C	0.277	1.00								
Chloromethane		< 1.00	μg/L	SW8260C	0.127	1.00								
Methylene chloride		< 1.00	μg/L	SW8260C	0.155	1.00								
Surr: 1,2-Dichloroetha	ane-d4	55.8	$\mu g/L$	SW8260C			50.00		112	76 - 138				
Surr: 4-Bromofluorob	enzene	46.2	μg/L	SW8260C			50.00		92.4	77 - 121				
Surr: Dibromofluoron	nethane	52.4	$\mu g/L$	SW8260C			50.00		105	67 - 128				
Surr: Toluene-d8		48.7	μg/L	SW8260C			50.00		97.3	81 - 135				
Lab Sample ID: MB V Test Code: 8260-		Date Analyzed:	09/09/2013	1650h										
Carbon tetrachloride		< 1.00	μg/L	SW8260C	0.137	1.00								
Chloroform		< 1.00	μg/L	SW8260C	0.277	1.00								
Chloromethane		< 1.00	μg/L	SW8260C	0.127	1.00								
Methylene chloride		< 1.00	μg/L	SW8260C	0.155	1.00								
Surr: 1,2-Dichloroetha	ane-d4	54.7	μg/L	SW8260C			50.00		109	76 - 138				
Surr: 4-Bromofluorob	enzene	47.4	μg/L	SW8260C			50.00		94.8	77 - 121				
Surr: Dibromofluoron	nethane	51.7	μg/L	SW8260C			50.00		103	67 - 128				
Surr: Toluene-d8		48.4	μg/L	SW8260C			50.00		96.8	81 - 135				
Lab Sample ID: MB V Test Code: 8260-		Date Analyzed:	09/10/2013	0818h										
Carbon tetrachloride		< 1.00	μg/L	SW8260C	0.137	1.00								
Chloroform		< 1.00	μg/L	SW8260C	0.277	1.00								
Chloromethane		< 1.00	μg/L	SW8260C	0.127	1.00								
Methylene chloride		< 1.00	μg/L	SW8260C	0.155	1.00								
Surr: 1,2-Dichloroetha	ane-d4	56.6	μg/L	SW8260C			50.00		113	76 - 138				
Surr: 4-Bromofluorob	enzene	47.6	μg/L	SW8260C			50.00		95.1	77 - 121				
Surr: Dibromofluoron	nethane	53.0	μg/L	SW8260C			50.00		106	67 - 128				
Surr: Toluene-d8		47.8	µg/L	SW8260C			50.00		95.7	81 - 135				

Report Date: 9/18/2013 Page 53 of 55

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1309103

Client:

Project: 3rd Quarter Chloroform 2013

Contact: Garrin Palmer

Dept: MSVOA

Dept: MSV **QC Type:** MS

					Reporting	Amount	Spike Ref.			RPD Ref.		RPD	
Analyte	Result	Units	Method	MDL	Limit	Spiked	Amount	%REC	Limits	Amt	% RPD	Limit	Qual
Lab Sample ID: 1309103-007CMS	Date Analyzed:	09/09/2013	0910h										
Test Code: 8260-W													
Chloroform	12,100	μg/L	SW8260C	27.7	200	2,000	9640	124	50 - 146				
Methylene chloride	2,320	μg/L	SW8260C	15.5	200	2,000	0	116	30 - 192				
Surr: 1,2-Dichloroethane-d4	5,480	μg/L	SW8260C			5,000		110	72 - 151				
Surr: 4-Bromofluorobenzene	4,380	$\mu g/L$	SW8260C			5,000		87.6	80 - 128				
Surr: Dibromofluoromethane	5,280	μg/L	SW8260C			5,000		106	80 - 124				
Surr: Toluene-d8	4,720	μg/L	SW8260C			5,000		94.4	77 - 129				
Lab Sample ID: 1309103-014CMS	Date Analyzed:	09/10/2013	0015h										
Test Code: 8260-W					_								
Chloroform	20.9	$\mu g/L$	SW8260C	0.277	2.00	20.00	0	105	50 - 146				
Methylene chloride	23.3	$\mu g/L$	SW8260C	0.155	2.00	20.00	0	117	30 - 192				
Surr: 1,2-Dichloroethane-d4	55.7	$\mu g/L$	SW8260C			50.00		111	72 - 151				
Surr: 4-Bromofluorobenzene	45.5	μg/L	SW8260C			50.00		91.0	80 - 128				
Surr: Dibromofluoromethane	53.1	μg/L	SW8260C			50.00		106	80 - 124				
Surr: Toluene-d8	46.4	μg/L	SW8260C			50.00		92.7	77 - 129				

American West

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Contact:

Garrin Palmer

Lab Set ID: 1309103

Client:

Dept: MSVOA

Project: 3rd Quarter Chloroform 2013

QC Type: MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1309103-007CMSD Test Code: 8260-W	Date Analyzed:	09/09/2013	0929h										
Chloroform	11,600	μg/L	SW8260C	27.7	200	2,000	9640	98.2	50 - 146	12100	4.34	25	
Methylene chloride	2,240	μg/L	SW8260C	15.5	200	2,000	0	112	30 - 192	2320	3.60	25	
Surr: 1,2-Dichloroethane-d4	5,360	μg/L	SW8260C			5,000		107	72 - 151				
Surr: 4-Bromofluorobenzene	4,350	μg/L	SW8260C			5,000		87.0	80 - 128				
Surr: Dibromofluoromethane	5,220	μg/L	SW8260C			5,000		104	80 - 124				
Surr: Toluene-d8	4,670	μg/L	SW8260C			5,000		93.4	77 - 129				
Lab Sample ID: 1309103-014CMSD Test Code: 8260-W	Date Analyzed:	09/10/2013	0034h										
Chloroform	22.1	μg/L	SW8260C	0.277	2.00	20.00	0	111	50 - 146	20.9	5.71	25	
Methylene chloride	24.6	$\mu g/L$	SW8260C	0.155	2.00	20.00	0	123	30 - 192	23.3	5.30	25	
Surr: 1,2-Dichloroethane-d4	56.0	$\mu g/L$	SW8260C			50.00		112	72 - 151				
Surr: 4-Bromofluorobenzene	45.5	μg/L	SW8260C			50.00		91.0	80 - 128				
Surr: Dibromofluoromethane	53.5	μg/L	SW8260C			50.00		107	80 - 124				
Surr: Toluene-d8	46.4	μg/L	SW8260C			50.00		92.8	77 - 129				

WORK ORDER Summary

Work Order: 1309103

Due Date: 9/17/2013

Page 1 of 4

Client:

Energy Fuels Resources, Inc.

Client ID:

DEN100

Contact:

Garrin Palmer

Project:

3rd Quarter Chloroform 2013

 Π QC Level:

WO Type: Project

Comments:

PA Rush. QC 3 (Summary/No chromatograms). RL of 1 ppm for Chloride and VOC and 0.1 ppm for NO2/NO3. Expected levels provided by client - see

Jenn. J-flag what we can't meet. EIM Locus and EDD-Denison. Email Group.;

	John. J Hag what we can't mee			·				- EVA
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
1309103-001A	TW4-25_09032013	9/3/2013 1240h	9/6/2013 1145h	300.0-W	Aqueous	V	df-wc	1
				1 SEL Analytes: CL				
1309103-001B				NO2/NO3-W-353.2		~	df - no2/no3	
				1 SEL Analytes: NO3NO.	2N			
1309103-001C				8260-W		~	VOCFridge	3
				Test Group: 8260-W-Cus	tom; $\#$ of Analytes: $4/\#$ of	Surr: 4		
1309103-002A	TW4-24_09032013	9/3/2013 1255h	9/6/2013 1145h	300.0-W	Aqueous	✓	df-wc	1
				1 SEL Analytes: CL				
1309103-002B				NO2/NO3-W-353.2		~	df - no2/no3	
				1 SEL Analytes: NO3NO.	2N			
1309103-002C				8260-W		V	VOCFridge	3
				Test Group: 8260-W-Cus	tom; # of Analytes: 4 / # o,	fSurr: 4		
1309103-003A	TW4-04_09032013	9/3/2013 1347h	9/6/2013 1145h	300.0-W	Aqueous	~	df-wc	1
				1 SEL Analytes: CL				
1309103-003B				NO2/NO3-W-353.2		~	df - no2/no3	
				I SEL Analytes: NO3NO.	2N			
1309103-003C				8260-W		V	VOCFridge	3
				Test Group: 8260-W-Cus	tom; # of Analytes: 4 / # o	f Surr: 4		
1309103-004A	MW-04_09032013	9/3/2013 1335h	9/6/2013 1145h	300.0-W	Aqueous	~	df-wc	1
				1 SEL Analytes: CL				
1309103-004B				NO2/NO3-W-353.2		~	df - no2/no3	
				1 SEL Analytes: NO3NO	2N			
1309103-004C				8260-W		✓	VOCFridge	3
				Test Group: 8260-W-Cus	stom; # of Analytes: 4/# o	f Surr: 4		
1309103-005A	TW4-19_09032013	9/3/2013 1030h	9/6/2013 1145h	300.0-W	Aqueous	V	df-wc	1
) 75 C			I SEL Analytes: CL				
1309103-005B				NO2/NO3-W-353.2		V	df - no2/no3	
				1 SEL Analytes: NO3NO	2N			
1309103-005C				8260-W		V	VOCFridge	3
				Test Group: 8260-W-Cus	stom; # of Analytes: 4 / # o	f Surr: 4		
1309103-006A	MW-26_09032013	9/3/2013 1325h	9/6/2013 1145h	300.0-W	Aqueous	V	df - wc	1
	_			I SEL Analytes: CL	-			

WORK ORDER Summary Work Order: 1309103 Page 2 of 4 Due Date: 9/17/2013 Energy Fuels Resources, Inc. Client: Client Sample ID **Collected Date** Received Date **Test Code** Matrix Sel Storage Sample ID df - no2/no3 9/3/2013 1325h 9/6/2013 1145h NO2/NO3-W-353.2 1309103-006B MW-26_09032013 Aqueous 1 SEL Analytes: NO3NO2N 8260-W **VOCFridge** 1309103-006C Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 df - wc 1309103-007A TW4-22 09032013 9/3/2013 1305h 9/6/2013 1145h 300.0-W Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 V 1309103-007B df - no2/no3 I SEL Analytes: NO3NO2N 8260-W **VOCFridge** 1309103-007C Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 TW4-20_09032013 9/3/2013 1315h 9/6/2013 1145h 300.0-W df-wc 1309103-008A Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 1309103-008B 1 SEL Analytes: NO3NO2N VOCFridge 1309103-008C 8260-W Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 300.0-W 1 df - wc 1309103-009A MW-32 09042013 9/4/2013 1240h 9/6/2013 1145h Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 1309103-009B 1 SEL Analytes: NO3NO2N 8260-W **VOCFridge** 1309103-009C Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 1309103-010A TW4-05R_09042013 9/4/2013 1407h 9/6/2013 1145h 300.0-W Aqueous df-wc 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 1309103-010B 1 SEL Analytes: NO3NO2N 1309103-010C 8260-W VOCFridge Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 1309103-011A TW4-70_09052013 9/5/2013 0710h 9/6/2013 1145h 300.0-W df - wc 'Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 1309103-011B 1 SEL Analytes: NO3NO2N 8260-W VOCFridge 1309103-011C Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 1309103-012A TW4-31 09052013 9/5/2013 0655h 9/6/2013 1145h 300.0-W df-wc Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 1309103-012B df - no2/no3 1 SEL Analytes: NO3NO2N 8260-W **VOCFridge** 1309103-012C Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4

RT 🗌

CN \square

TAT

QC [

HOK

HOK

HOK

COC Emailed

%M 🗆

Printed: 9/6/2013

FOR LABORATORY USE ONLY [fill out on page 1]:

WORK ORDER Summary

Work Order: 1309103

Page 3 of 4

Client: Energy Fuels Resources, Inc. Due Date: 9/17/2013 Collected Date Received Date **Test Code** Sample ID Client Sample ID Matrix Sel Storage ~ 1309103-013A TW4-23 09052013 9/5/2013 0704h 9/6/2013 1145h 300.0-W df-wc Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 1309103-013B df-no2/no3 1 SEL Analytes: NO3NO2N 8260-W **VOCFridge** 1309103-013C Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 9/5/2013 0710h 300.0-W 1309103-014A TW4-08 09052013 9/6/2013 1145h Aqueous df-wc I SEL Analytes: CL 1309103-014B NO2/NO3-W-353.2 df-no2/no3 1 SEL Analytes: NO3NO2N VOCFridge 1309103-014C 8260-W Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 1309103-015A TW4-09 09052013 9/5/2013 0723h 9/6/2013 1145h 300.0-W df - wc Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 1309103-015B 1 SEL Analytes: NO3NO2N 8260-W **VOCFridge** 1309103-015C Test Group; 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 TW4-16 09052013 9/5/2013 0729h 9/6/2013 1145h 300.0-W df - wc 1309103-016A Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 1309103-016B df - no2/no3 1 SEL Analytes: NO3NO2N 8260-W 1309103-016C VOCFridge Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 1309103-017A TW4-26 09052013 9/5/2013 0748h 9/6/2013 1145h 300.0-W Aqueous df-wc 1 SEL Analytes: CL NO2/NO3-W-353.2 1309103-017B df - no2/no3 1 SEL Analytes: NO3NO2N 8260-W 1309103-017C **VOCFridge** Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 1309103-018A TW4-06_09052013 9/5/2013 0757h 9/6/2013 1145h 300.0-W df-wc Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 1309103-018B df - no2/no3 1 SEL Analytes: NO3NO2N 1309103-018C 8260-W **VOCFridge** Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 300.0-W 1309103-019A TW4-05 09052013 9/5/2013 0805h 9/6/2013 1145h df-wc Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 1309103-019B df - no2/no3 1 SEL Analytes: NO3NO2N RT 🗌 TAT 🗌 %M □ CN 🖂 QC 🖂 Printed: 9/6/2013 FOR LABORATORY USE ONLY [fill out on page 1]: HOK HOK HOK COC Emailed

WORK ORDER Summary Work Order: 1309103 Page 4 of 4 Energy Fuels Resources, Inc. Due Date: 9/17/2013 Client: Sample ID Client Sample ID **Collected Date Received Date Test Code** Matrix Sel Storage 8260-W VOCFridge TW4-05_09052013 9/5/2013 0805h 9/6/2013 1145h 1309103-019C Aqueous Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 1309103-020A 9/5/2013 0815h 9/6/2013 1145h 300.0-W Aqueous df-wc TW4-18_09052013 1 SEL Analytes: CL ~ NO2/NO3-W-353.2 df - no2/no3 1309103-020B 1 SEL Analytes: NO3NO2N 1309103-020C 8260-W VOCFridge Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 9/3/2013 8260-W 1309103-021A Trip Blank 9/6/2013 1145h VOCFridge Aqueous Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4

AMERICAN WEST ANALYTICAL LABORATORIES

CHAIN OF CUSTODY

1309103

A I	463 W. 3600 S. SALT LAKE PHONE # (801) 263-8686 TOLL FR			Α	WA	L's st	ANDA	RD AN	ALYT					(PQL)			CALLY REQUESTED OTHERWISE ON THIS	PAGE 1 OF 2
	FAX # (801) 263-8687 EMAIL	AWAL@AWAL-LA	ABS,COM	Г		QC	Lev	EL:			Т	URN A	AROI	UND T	ME:		Unless other arrangements have been made, signed reports will be	DUE DATE:
	WWW.AWAL-LABS	S.COM		L		,,,	3					S ⁻	TAND.	ARD			EMAILED BY 5:00 PM ON THE DAY THEY ARE DUE.	
CLIENT:	Energy Fuels Resources, Inc.																X INCLUDE EDD:	LABORATORY USE ONLY
Address:	6425 S. Hwy. 191				П				ı								LOCUS UPLOAD EXCEL	SAMPLES WERE FER
	Blanding, UT 84511								ı								FIELD FILTERED FOR:	1 SHIPPED OR HAND DELLYERED
CONTACT:	Garrin Palmer							1	ı									2 AMBIENT ON CHILLED
PHONE #:	(435) 678-2221 CELL #:							×	ı								FOR COMPLIANCE WITH:	3 TEMPERATURE 3.9 9C
EMAIL:	gpalmer@energyfuels.com; KWeinel@energy dturk@energyfuels.com	fuels.com;			l				ı						4		□ RCRA □ CWA	4 Received Broken/Leaking
PROJECT NAME:	3rd quarter Chloroform 2013				ı				ı								□ SDWA □ ELAP / A2LA	(N) * N _
PROJECT #:				RS		2	300.0)		ı								□ NLLAP □ Non-Compliance	5 PROPERLY PRESERVED
PO #:				AINE	TRIX	(353.2)	or 30(00									☐ OTHER:	CHECKED AT BENCH
SAMPLER NAME:	Tanner Holliday, Garrin Palmer			NO.	LE MATRIX		(4500 0	(8260C)									Known Hazards	6 RECEIVED WITHIN
		DATE	Тіме	l b	SAMPL	NO2/NO3	CI (45	l S									&	HOLDING TIMES Y N
rw4-25_0903201	SAMPLE ID:	9/3/2013	SAMPLED 1240	#	W	X	х	_	╁	-∤	-	\vdash	-	-	+	H	SAMPLE COMMENTS	
rw4-24_0903201		9/3/2013	1255	5	w	X	X	+	+	+-		H	-	-	+			50.00
rw4-04_090320		9/3/2013	1347	5	w	X	X	+	+	+-		H	-	-				COG TAPE WAS: 1 PRESENT ON OUTER PACKAGE
W-04_0903201		9/3/2013	1335	5	w	X	X	-	-	+	H	\vdash	-	-	-	-		(Y) N NA
rw4-19_0903201		9/3/2013	1030	5	w	X	X	+-	-	#	-		\dashv	-	H			2 UNBROKEN ON OUTER PACKAGE N NA
WW-26_0903201		9/3/2013	1325	5	W	X	X	-	+	-	-	\vdash	-		+	H		3 PRESENT ON SAMPLE
rw4-22_090320:		9/3/2013	1305	5	w	x	X	+	+	+		\vdash	\dashv	+	+	H	*+	Y N (NA)
rw4-20_090320:		9/3/2013	1315	5	W	x	x	+-	+	+		\vdash	\dashv	+	+		* two vial Briken	4 UNBROKEN ON SAMPLEY N (NA)
WW-32_0904201		9/4/2013	1240	5	w	x	X	-	-	+			+	_	+		tone vial profes	
rw4-05R_09042		9/4/2013	1407	5	w	x	X	_	+	+	-		-		1	-		DISCREPANCIES BETWEEN SAMPLE LABELS AND COC RECORD?
rw4-70_090520:		9/5/2013	710	5	w	х	x	-	+	+	-		\dashv	\dashv	+			, Q
rw4-31_090520		9/5/2013	655	5	w	х	х	+	+				-		1			
rw4-23_090520		9/5/2013	704	5	w	х	x	-	T									
RELINQUISHED BY:	Janner Holliday	PATE: 9/5/2013	RECEIVED BY:	_	_	_	_	_	_			DATE:					SPECIAL INSTRUCTIONS:	l
	ner Holliday	TIME:	PRINT NAME:					_				Тіме:						
RELINQUISHED BY: SIGNATURE	Tinn was	DATE:	RECEIVED BY	1	in		B	1			/	DATE:	9-1	6.1	′3		See the Analytical Scope of Wo VOC analyte list.	ork for Reporting Limits and
PRINT NAME:		Time:	PRINT NAME:	_	10	_	-	JU		,		Тіме:		45			VOC analyte list.	
RELINQUISHED BY: SIGNATURE	/	DATE:	RECEIVED BY: SIGNATURE				-	,		1		DATE:		-				
PRINT NAME:		TIME:	PRINT NAME:									Тіме:						
Relinquished by: Signature		DATE:	RECEIVED BY: SIGNATURE									DATE:						
PRINT NAME:		Тіме:	PRINT NAME:									Тіме:						

AMERICAN WEST **ANALYTICAL LABORATORIES**

CHAIN OF CUSTODY

1309113

ALL ANALYSIS WILL BE CONDUCTED USING NELAP ACCREDITED METHODS AND ALL DATA WILL BE REPORTED USING

	PHONE # (801) 263-8686 TOLL FRE		-8686		WAI	L's sta	ANDAR	RD AN	IALYT									CALLY REQUESTED OTHERWISE ON THIS	PAGE 2 OF 2
	FAX # (801) 263-8687 EMAIL	AWAL@AWAL-LA	BS,COM			QC	Levi	EL:				Tur	n A	ROUN	D TII	ME:		Unless other arrangements have been made, signed reports will be	DUE DATE:
	WWW.AWAL-LABS	.сом					3						STA	NDAF	RD			EMAILED BY 5:00 PM ON THE DAY THEY ARE DUE.	
CLIENT:	Energy Fuels Resources, Inc.								T					T				X INCLUDE EDD:	LABORATORY USE ONLY
Address:	6425 S. Hwy. 191								ı				ł		1			LOCUS UPLOAD EXCEL	SAMPLES WERE FEN -X
	Blanding, UT 84511				П				ı									FIELD FILTERED FOR:	1 SHIPPED OR HAND DELIVERED
CONTACT:	Garrin Palmer				П				ı										2 AMBIENT OR CHILLED
PHONE #:					П				ı									FOR COMPLIANCE WITH:	3 TEMPERATURE 3.9 °C
EMAIL:	gpalmer@energyfuels.com; KWeinel@energyfuels.com	uels.com;							ı									□ RCRA □ CWA	4 Received Broken/Leaking
PROJECT NAME:	3rd quarter Chloroform 2013								ı									□ SDWA □ ELAP / A2LA	(IMPROPERLY SEALED) N
PROJECT #:				RS.		(2)	300.0)		1									□ NLLAP □ Non-Compliance	5 PROPERLY PRESERVED
PO #:				AINE	MATRIX	(353.2)	or 30	0		- 1					1			OTHER:	CHECKED AT BENCH
SAMPLER NAME:	Tanner Holliday, Garrin Palmer			NO.	LE MA	103	(4500 o	(8260C)										Known Hazards	Y N 6 Received Within
		DATE	Тіме	l ö	W.W.	NO2/NO3	C1 (48	1 75										&	HOLDING TIMES Y N
mr4 on onorgo	SAMPLE ID:	SAMPLED	SAMPLED	#		_	_	7	_	+	+	┿	+	+	+		H	SAMPLE COMMENTS	
W4-08_090520		9/5/2013	710	3 -	W	х	х	x	+	= -	+	+	+	+	+	\vdash			
W4-09_090520	en:	9/5/2013	723	5	w	х	X	+	+	+	-	+	+	+	+	-			COC TAPE WAS: 1 PRESENT ON OUTER PACKAGE
W4-16_090520	184	9/5/2013	729	5	w	х	х	x	╁	-	+	+	+	+	+	-			(Y) N NA
W4-26_090520		9/5/2013	748	5	w	х	х	x	+	_	-	+	-	-	-				2 UNBROKEN ON OUTER PACKAGE Y N NA
W4-06_090520		9/5/2013	757	5	w	х	х	x	+	_	4	+	_		4	-			
W4-05_090520		9/5/2013	805	5	W	х	x	x	1	_	4	+	-	4	+	-	_		Y N NA
W4-18_090520	13,	9/5/2013	815	5	w	х	х	x	+	_	4	-	_	4	_	-			4 UNBROKEN ON SAMPLE) Y N NA
RIP BLANK		9/3/2013		3	w		_	x	_	_	_	_	_	1	_	-	_		Y N (NA)
EMP BLANK		9/5/2013		1	w			_	1	_		1	4	+	_	_			DISCREPANCINE BETWEEN SAMPLE
				L	L			4	1				_	_	_	_			LABILS AND COC RECORD?
				L				1	1										
				L				4_	1	_	_				_		L		
				L	L						_			1					
CELINQUEHED BY: —	arrec Holliam)	9/5/2013	RECEIVED BY: SIGNATURE									DA						SPECIAL INSTRUCTIONS:	
			PRINT NAME:									TIM							
RELINGUISHED BY:		DATE:	RECEIVED SEY!	4	n	-	1	4			1	DA	7	6-	13			See the Analytical Scope of Wo VOC analyte list.	ork for Reporting Limits and
PRINT NAME:		TIME:	PRINT NAME:			ms	<u>.</u>	V+	4	rule_	1			145					
RELINQUISHED BY: SIGNATURE		DATE:	RECEIVED BY: SIGNATURE						1		/		TE:	100					
PRINT NAME;		Гіме:	PRINT NAME:									TIM							
RELINQUISHED BY: SIGNATURE		DATE:	RECEIVED BY: SIGNATURE									DA							
Samuel Maria		Тіме:	Down North									TIN	Æ:						

AWAL - Analytical Scope of Work White Mesa Mill Blanding Utah Page 11 of 13

Contaminant	Analytical	Reporting	Maximum	Sample	Sample
有自己是有一种企业的	Methods	Limit	Holding	Preservation	Temperature
	to be Used		Times	Requirements	Requirements
General Inorganics				A STATE OF THE STATE OF	
Chloride	A4500-Cl	1 mg/L	28 days	None	≤6°C
	B or				
	A4500-C1				
	E				
	or E300.0	\rightarrow			
Sulfate	A4500-	1 mg/L	28 days	None	≤6°C
	SO4 E or				ľ
a 1	E300.0	1 77	1.4134.338.33	, , , , , , , , , , , , , , , , , , ,	600
Carbonate as CO3	A2320 B	1 mg/L	14 days	None	≥6°C
Bicarbonate as HCO3	A2320 B	1 mg/L	14 days	None	Apply and the management
Volatile Organic Compound	SW8260B		自己	TICL AND THE	1 con
Carbon Tetrachloride		1.0 μg/L	14 days	HCl to pH<2	≤6°C
	or SW8260C				
Chloroform	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
Chiofolini		1.0 µg/L	14 days	nci to pn\2	> 0 C
	or SW8260C				l
Dichloromethane	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
(Methylene Chloride)	or	1.0 μg/L	14 days	Tier to pri 2	1300
(Wieldy lefte emoride)	SW8260C				
Chloromethane	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
	or	1.0 µg/2	1 · days	Tier to pir 2	0
	SW8260C				
SVOCs - Tailings Impound		Only	DEC SECTION		
1,2,4-Trichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1,2-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	
1,3-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None /	≤6°C
1,4-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1-Methylnaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4,5-Trichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4,6-Trichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4-Dichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4-Dimethylphenol	SW8270D	<10 ug/L	1/40 days	None	≤6°C
2,4-Dinitrophenol	SW8270D	<20 ug/k	7/40 days	None	≤6°C
2,4-Dinitrotoluene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,6-Dinitrotoluene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Chloronaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Chlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Methylnaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Methylphenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Nitrophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
3&4-Methylphenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
3,3'-Dichlorobenzidine	SW8270D	<10 ug/L	7/40 days	None	≤6°€
4.6-Dinitro-2-methylphenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C

Preservation Check Sheet

Sample Set Extension and pH

Analysis	Preservative	1	2	3	9	5	6	7	8	9	10	11	12-	/3	14	15	16	17	18	19 2
Ammonia	pH <2 H ₂ SO ₄											7.0	100				li i			
COD	pH <2 H ₂ SO ₄] [
Cyanide	pH >12 NaOH																			
Metals	pH <2 HNO ₃																			
NO ₂ & NO ₃	pH <2 H ₂ SO ₄	405	1/2	Ves	Ves	Yes	1/04	Ves	Ves	yes	Ves	Yes	Ves	Ve5	Yes	Ves	Ves	Ves	Ves	XSY
O&G	pH <2 HCL	Y	1	1	/	1	1	/	1	/	/	/	/	/	1	1	/	1	Y	11
Phenols	pH <2 H ₂ SO ₄																			
Sulfide	pH > 9NaOH, Zn Acetate																			
TKN	pH <2 H ₂ SO ₄																			7
T PO ₄	pH <2 H ₂ SO ₄															-]
										-										7 [
																				1
		ļ								-										1
																				1

Procedure:

- 1) Pour a small amount of sample in the sample lid
- 2) Pour sample from Lid gently over wide range pH paper
- 3) Do Not dip the pH paper in the sample bottle or lid
- 4) If sample is not preserved, properly list its extension and receiving pH in the appropriate column above
- 5) Flag COC, notify client if requested
- 6) Place client conversation on COC
- 7) Samples may be adjusted

Frequency:

All samples requiring preservation

- * The sample required additional preservative upon receipt.
- + The sample was received unpreserved
- ▲ The Sample was received unpreserved and therefore preserved upon receipt.
- # The sample pH was unadjustable to a pH < 2 due to the sample matrix
- The sample pH was unadjustable to a pH > ____ due to the sample matrix interference

Garrin Palmer Energy Fuels Resources, Inc. 6425 S. Hwy 191

Blanding, UT 84511 TEL: (435) 678-2221

RE: 3rd Quarter Chloroform 2013

Dear Garrin Palmer:

Lab Set ID: 1309255

463 West 3600 South 3alt Lake City, UT 84115

American West Analytical Laboratories received 9 sample(s) on 9/13/2013 for the analyses presented in the following report.

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

American West Analytical Laboratories (AWAL) is accredited by The National Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is state accredited in Colorado, Idaho, New Mexico, and Missouri.

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (POL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Thank You,

Kyle F. Digitally signed by Kyle F. Gross DN: cn=Kyle F. Gross, o=AWAL, ou=AWAL-taboratory Director, email=kyle@awal-labs.com, c=US Date: 2013.09 24 14:41:07 -06'00'

Laboratory Director or designee

SAMPLE SUMMARY

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Set ID:

1309255

Date Received:

9/13/2013 1015h

	Lab Sample ID	Client Sample ID	Date Collected	Matrix	Analysis
463 West 3600 South	1309255-001A	TW4-29_09122013	9/12/2013 0657	h Aqueous	Anions, E300.0
Salt Lake City, UT 84115	1309255-001B	TW4-29_09122013	9/12/2013 0657	h Aqueous	Nitrite/Nitrate (as N), E353.2
	1309255-001C	TW4-29_09122013	9/12/2013 0657	h Aqueous	VOA by GC/MS Method 8260C/5030C
Phone: (801) 263-8686	1309255-002A	TW4-21_09122013	9/12/2013 0711	h Aqueous	Anions, E300.0
	1309255-002B	TW4-21_09122013	9/12/2013 0711	h Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686 Fax: (801) 263-8687	1309255-002C	TW4-21_09122013	9/12/2013 0711	h Aqueous	VOA by GC/MS Method 8260C/5030C
e-mail: awal@awal-labs.com	1309255-003A	TW4-10_09122013	9/12/2013 0723	h Aqueous	Anions, E300.0
	1309255-003B	TW4-10_09122013	9/12/2013 0723	h Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	1309255-003C	TW4-10_09122013	9/12/2013 0723	h Aqueous	VOA by GC/MS Method 8260C/5030C
	1309255-004A	TW4-11_09122013	9/12/2013 0747	h Aqueous	Anions, E300.0
Kyle F. Gross	1309255-004B	TW4-11_09122013	9/12/2013 0747	h Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	1309255-004C	TW4-11_09122013	9/12/2013 0747	h Aqueous	VOA by GC/MS Method 8260C/5030C
	1309255-005A	TW4-07_09122013	9/12/2013 0753	h Aqueous	Anions, E300.0
Jose Rocha	1309255-005B	TW4-07_09122013	9/12/2013 0753	h Aqueous	Nitrite/Nitrate (as N), E353.2
QA Officer	1309255-005C	TW4-07_09122013	9/12/2013 0753	h Aqueous	VOA by GC/MS Method 8260C/5030C
	1309255-006B	TW4-01_09122013	9/12/2013 0800	h Aqueous	Nitrite/Nitrate (as N), E353.2
	1309255-006C	TW4-01_09122013	9/12/2013 0800	h Aqueous	VOA by GC/MS Method 8260C/5030C
	1309255-007A	TW4-02_09122013	9/12/2013 0807	h Aqueous	Anions, E300.0
	1309255-007B	TW4-02_09122013	9/12/2013 0807	h Aqueous	Nitrite/Nitrate (as N), E353.2
	1309255-007C	TW4-02_09122013	9/12/2013 0807	h Aqueous	VOA by GC/MS Method 8260C/5030C
	1309255-008A	TW4-60_09122013	9/12/2013 0845	h Aqueous	Anions, E300.0
	1309255-008B	TW4-60_09122013	9/12/2013 0845	h Aqueous	Nitrite/Nitrate (as N), E353.2
	1309255-008C	TW4-60_09122013	9/12/2013 0845	h Aqueous	VOA by GC/MS Method 8260C/5030C
	1309255-009A	Trip Blank	9/12/2013	Aqueous	VOA by GC/MS Method 8260C/5030C

Inorganic Case Narrative

Client: Contact:

Energy Fuels Resources, Inc.

Garrin Palmer

Project: Lab Set ID: 3rd Quarter Chloroform 2013

1309255

463 West 3600 South

Salt Lake City, UT 84115

Sample Receipt Information:

Date of Receipt:

9/13/2013

Date of Collection:

9/12/2013

Sample Condition:

Intact

C-O-C Discrepancies:

None

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Holding Time and Preservation Requirements: The analysis and preparation of all samples were performed within the method holding times. All samples were properly preserved.

Preparation and Analysis Requirements: The samples were analyzed following the

methods stated on the analytical reports.

Analytical QC Requirements: All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Kyle F. Gross

Laboratory Director

Batch QC Requirements: MB, LCS, MS, MSD, RPD:

Jose Rocha QA Officer Method Blanks (MB): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Samples (LCS): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicates (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, with the following exceptions: The MS and MSD percent recoveries for nitrate/nitrite were outside of control limits on sample 1309255-005B due to sample matrix interference.

Corrective Action: None required.

Volatile Case Narrative

Client: Contact: Energy Fuels Resources, Inc.

Garrin Palmer

Project:

Lab Set ID:

3rd Quarter Chloroform 2013

1309255

463 West 3600 South

Phone: (801) 263-8686

Fax: (801) 263-8687

Sample Receipt Information:

Salt Lake City, UT 84115

Date of Receipt: **Date of Collection:**

9/13/2013 9/12/2013

Sample Condition:

Intact

C-O-C Discrepancies:

None

Method:

SW-846 8260C/5030C

Analysis:

Volatile Organic Compounds

≥-mail: awal@awal-labs.com

Toll Free: (888) 263-8686

General Set Comments: Multiple target analytes were observed above reporting limits.

web: www.awal-labs.com

Holding Time and Preservation Requirements: All samples were received in appropriate containers and properly preserved. The analysis and preparation of all samples were performed within the method holding times following the methods stated on the analytical reports.

Kyle F. Gross Laboratory Director

Analytical OC Requirements: All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Jose Rocha **QA** Officer Batch QC Requirements: MB, LCS, MS, MSD, RPD, and Surrogates:

Method Blanks (MBs): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Sample (LCSs): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicate (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, indicating no apparent matrix interferences.

Surrogates: All surrogate recoveries were within established limits.

Corrective Action: None required.

Client:

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1309255

Project: 3rd Quarter Chloroform 2013

Contact: Garrin Palmer

Dept: WC

QC Type: LCS

	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
LCS-R59272 300.0-W	Date Analyzed:	09/18/2013	1211h										
	4.50	mg/L	E300.0	0.0114	0.100	5.000	0	90.1	90 - 110				
LCS-R59208 NO2/NO3-W-353.2	Date Analyzed:	09/17/2013	2038h	-									
s N)	1.02	mg/L	E353.2	0.00252	0.100	1.000	0	102	90 - 110				
	LCS-R59208	LCS-R59272 Date Analyzed: 300.0-W 4.50 LCS-R59208 Date Analyzed: NO2/NO3-W-353.2	LCS-R59272 Date Analyzed: 09/18/2013 300.0-W 4.50 mg/L LCS-R59208 Date Analyzed: 09/17/2013 NO2/NO3-W-353.2 O9/17/2013	LCS-R59272 Date Analyzed: 09/18/2013 1211h 300.0-W 4.50 mg/L E300.0 LCS-R59208 Date Analyzed: 09/17/2013 2038h NO2/NO3-W-353.2 O9/17/2013 2038h	LCS-R59272 Date Analyzed: 09/18/2013 1211h 300.0-W 4.50 mg/L E300.0 0.0114 LCS-R59208 Date Analyzed: 09/17/2013 2038h NO2/NO3-W-353.2 O2/NO3-W-353.2	Result Units Method MDL Limit	CCS-R59272 Date Analyzed: 09/18/2013 1211h E300.0 0.0114 0.100 5.000	Result Units Method MDL Limit Spiked Amount	CS-R59272 Date Analyzed: 09/18/2013 1211h	LCS-R59272 300.0-W Date Analyzed: 09/18/2013 1211h LCS-R5928 NO2/NO3-W-353.2 Date Analyzed: 09/17/2013 2038h	CS-R59272 Date Analyzed: O9/18/2013 1211h Spiked Spiked Amount %REC Limits Amt Amt LCS-R59272 300.0-W	LCS-R59272 Date Analyzed: O9/18/2013 1211h Spiked Spiked Amount %REC Limits Amt % RPD	LCS-R59272 Date Analyzed: O9/18/2013 1211h Spiked Spiked Amount WREC Limits Amt WRPD Limits LCS-R59272 Significant O9/18/2013 1211h Spiked O9/18/2013 1211h O9/18/2013 1211h O9/18/2013 1211h O9/18/2013 1211h O9/18/2

Lab Set ID: 1309255

Client:

Project:

Energy Fuels Resources, Inc.

3rd Quarter Chloroform 2013

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Garrin Palmer

Dept: WC

QC Type: MBLK

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	MB-R59272	Date Analyzed:	09/18/2013	1148h										
Test Code:	300.0-W													
Chloride		< 0.100	mg/L	E300.0	0.0114	0.100								
Lab Sample ID: Test Code:	MB-R59208 NO2/NO3-W-353.2	Date Analyzed:	09/17/2013	2037h										
Nitrate/Nitrite (as		< 0.100	mg/L	E353.2	0.00252	0.100								

American West

Client:

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1309255

Project: 3rd Quarter Chloroform 2013

Contact: Garrin Palmer

Dept: WC **QC Type:** MS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1309253-001AMS 300.0-W	Date Analyzed:	09/18/2013	1802h										
Chloride		467	mg/L	E300.0	1.14	10.0	500.0	7.94	91.8	90 - 110				
Lab Sample ID: Test Code:	1309255-008AMS 300.0-W	Date Analyzed:	09/18/2013	2241h										
Chloride		4.83	mg/L	E300.0	0.0114	0.100	5.000	0.029	96.0	90 - 110				
Lab Sample ID: Test Code:	1309253-001BMS NO2/NO3-W-353.2	Date Analyzed:	09/17/2013	2045h										
Nitrate/Nitrite (as	N)	1.36	mg/L	E353.2	0.00252	0.100	1.000	0.413	94.8	90 - 110				
	1309255-005BMS NO2/NO3-W-353.2	Date Analyzed:	09/17/2013	2117h										
Nitrate/Nitrite (as	N)	16.2	mg/L	E353.2	0.0252	1.00	10.00	4.17	120	90 - 110				

^{1 -} Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

American West

Client:

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1309255

Project: 3rd Quarter Chloroform 2013

Contact: Garrin Palmer

Dept: WC

QC Type: MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1309253-001AMSD Test Code: 300.0-W	Date Analyzed:	09/18/2013	1825h										
Chloride	459	mg/L	E300.0	1.14	10.0	500.0	7.94	90.2	90 - 110	467	1.73	20	
Lab Sample ID: 1309255-008AMSD Test Code: 300.0-W	Date Analyzed:	09/18/2013	2304h										
Chloride	4.86	mg/L	E300.0	0.0114	0.100	5.000	0.029	96.6	90 - 110	4.83	0.660	20	
Lab Sample ID: 1309253-001BMSD Test Code: NO2/NO3-W-353.2	Date Analyzed:	09/17/2013	2047h										
Nitrate/Nitrite (as N)	1,31	mg/L	E353.2	0.00252	0.100	1.000	0.413	89.7	90 - 110	1.36	3.77	10	§
Lab Sample ID: 1309255-005BMSD Test Code: NO2/NO3-W-353,2	Date Analyzed:	09/17/2013	2118h										
Nitrate/Nitrite (as N)	15.6	mg/L	E353.2	0.0252	1.00	10.00	4.17	115	90 - 110	16.2	3.32	10	Ĭ.

^{§ -} QC limits are set with an accuracy of two significant figures, therefore the recovery rounds to an acceptable value within the control limits.

^{1 -} Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

American West

Client:

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1309255

Project: 3rd Quarter Chloroform 2013

Contact: Garrin Palmer

Dept: MSVOA **QC Type:** LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:LCS VOA 091613BTest Code:8260-W	Date Analyzed:	09/16/2013	1904h										
Chloroform	20.2	μg/L	SW8260C	0.277	2.00	20.00	0	101	67 - 132				
Methylene chloride	17.9	μg/L	SW8260C	0.155	2.00	20.00	0	89.3	32 - 185				
Surr: 1,2-Dichloroethane-d4	53.5	μg/L	SW8260C			50.00		107	76 - 138				
Surr: 4-Bromofluorobenzene	47.8	μg/L	SW8260C			50.00		95.5	77 - 121				
Surr: Dibromofluoromethane	51.9	μg/L	SW8260C			50.00		104	67 - 128				
Surr: Toluene-d8	48.6	μg/L	SW8260C			50.00		97.3	81 - 135				
Lab Sample ID: LCS VOA 091713A Test Code: 8260-W	Date Analyzed:	09/17/2013	1057h										
Chloroform	21.1	μg/L	SW8260C	0.277	2.00	20.00	0	106	67 - 132				
Methylene chloride	18.4	μg/L	SW8260C	0.155	2.00	20.00	0	91.9	32 - 185				
Surr: 1,2-Dichloroethane-d4	53.6	μg/L	SW8260C			50.00		107	76 - 138				
Surr: 4-Bromofluorobenzene	48.2	μg/L	SW8260C			50.00		96.5	77 - 121				
Surt: Dibromofluoromethane	51.8	μg/L	SW8260C			50.00		104	67 - 128				
Surr: Toluene-d8	48.6	μg/L	SW8260C			50.00		97.1	81 - 135				

American West

Lab Set ID: 1309255

Energy Fuels Resources, Inc.

3rd Quarter Chloroform 2013

Client:

Project:

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Garrin Palmer

Dept: MSVOA

QC Type: MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOA 091613B Test Code: 8260-W	Date Analyzed:	09/16/2013	1941h										
Carbon tetrachloride	< 1.00	μg/L	SW8260C	0.137	1.00								
Chloroform	< 1.00	$\mu g/L$	SW8260C	0.277	1.00								
Chloromethane	< 1.00	μg/L	SW8260C	0.127	1.00								
Methylene chloride	< 1.00	μg/L	SW8260C	0.155	1.00								
Surr: 1,2-Dichloroethane-d4	55.5	μg/L	SW8260C			50.00		111	76 - 138				
Surr: 4-Bromofluorobenzene	52.5	μg/L	SW8260C			50.00		105	77 - 121				
Surr: Dibromofluoromethane	51.5	$\mu g/L$	SW8260C			50.00		103	67 - 128				
Surr: Toluene-d8	50.3	$\mu g/L$	SW8260C			50.00		101	81 - 135				
Lab Sample ID: MB VOA 091713A Test Code: 8260-W	Date Analyzed:	09/17/2013	1134h										
Carbon tetrachloride	< 2.00	μg/L	SW8260C	0.137	2.00								
Chloroform	< 2.00	$\mu g/L$	SW8260C	0.277	2.00								
Chloromethane	< 3.00	μg/L	SW8260C	0.127	3.00								
Methylene chloride	< 2.00	μg/L	SW8260C	0.155	2.00								
Surr: 1,2-Dichloroethane-d4	56.2	μg/L	SW8260C			50.00		112	76 - 138				
Surr: 4-Bromofluorobenzene	52.6	$\mu g/L$	SW8260C			50.00		105	77 - 121				
Surr: Dibromofluoromethane	52.7	μg/L	SW8260C			50.00		105	67 - 128				
Surr: Toluene-d8	51.6	μg/L	SW8260C			50.00		103	81 - 135				

Lab Set ID: 1309255

Client:

Project:

Energy Fuels Resources, Inc.

3rd Quarter Chloroform 2013

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact:

Garrin Palmer

Dept:

MSVOA

QC Type: MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qua
Lab Sample ID: 1309253-001CMS Test Code: 8260-W	Date Analyzed:	09/17/2013	0017h										
Chloroform	18.4	μg/L	SW8260C	0.277	2.00	20.00	0	92.2	50 - 146				
Methylene chloride	16.0	μg/L	SW8260C	0.155	2.00	20.00	0	80.2	30 - 192				
Surr: 1,2-Dichloroethane-d4	56.3	μg/L	SW8260C			50.00		113	72 - 151				
Surr: 4-Bromofluorobenzene	47.6	$\mu g/L$	SW8260C			50.00		95.3	80 - 128				
Surr: Dibromofluoromethane	52.8	μg/L	SW8260C			50.00		106	80 - 124				
Surr: Toluene-d8	48.8	μg/L	SW8260C			50.00		97.7	77 - 129				
Lab Sample 1D: 1309255-001CMS	Date Analyzed:	09/17/2013	0054h										
A CONTRACTOR OF THE PROPERTY O	Date Analyzed:	09/17/2013	0054h				_						
A CONTRACTOR OF THE PROPERTY O	Date Analyzed:	09/17/2013 μg/L	0054h SW8260C	0.277	2.00	20.00	0	98.4	50 - 146				
Test Code: 8260-W		X.7		0.277 0.155	2.00 2.00	20.00	0	98.4 85.6	50 - 146 30 - 192				
Test Code: 8260-W Chloroform	19.7	μg/L	SW8260C										
Test Code: 8260-W Chloroform Methylene chloride	19.7 17.1	μg/L μg/L	SW8260C SW8260C			20.00		85.6	30 - 192				
Test Code: 8260-W Chloroform Methylene chloride Surr: 1,2-Dichloroethane-d4	19.7 17.1 55.7	μg/L μg/L μg/L	SW8260C SW8260C SW8260C			20.00 50.00		85.6 111	30 - 192 72 - 151				

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1309255

Client:

Project: 3rd Quarter Chloroform 2013

Contact: Garrin Palmer

Dept: MSVOA **QC Type:** MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1309253-001CMSD Test Code: 8260-W	Date Analyzed:	09/17/2013	0036h										
Chloroform	17.1	μg/L	SW8260C	0.277	2.00	20.00	0	85.7	50 - 146	18.4	7.37	25	
Methylene chloride	15.2	μg/L	SW8260C	0.155	2.00	20.00	0	75.8	30 - 192	16	5.58	25	
Surr: 1,2-Dichloroethane-d4	55.8	μg/L	SW8260C			50.00		112	72 - 151				
Surr: 4-Bromofluorobenzene	47.8	$\mu g/L$	SW8260C			50.00		95.7	80 - 128				
Surr: Dibromofluoromethane	52.7	μg/L	SW8260C			50.00		105	80 - 124				
Surr: Toluene-d8	48.7	$\mu g/L$	SW8260C			50.00		97.3	77 - 129				
Lab Sample ID: 1309255-001CMSD Test Code: 8260-W	Date Analyzed:	09/17/2013	0113h										
Chloroform	21.0	μg/L	SW8260C	0.277	2.00	20.00	0	105	50 - 146	19.7	6.44	25	
Methylene chloride	18.2	μg/L	SW8260C	0.155	2.00	20.00	0	90.9	30 - 192	17.1	6.06	25	
Surr: 1,2-Dichloroethane-d4	56.3	μg/L	SW8260C			50.00		113	72 - 151				
Surr: 4-Bromofluorobenzene	49.2	μg/L	SW8260C			50.00		98.3	80 - 128				
Surr: Dibromofluoromethane	52.6	μg/L	SW8260C			50.00		105	80 - 124				

DB

WORK ORDER Summary

DEN100

Work Order: 1309255

Page 1 of 2

Client:

Energy Fuels Resources, Inc.

Garrin Palmer Contact:

Client ID: Project:

3rd Quarter Chloroform 2013

QC Level: III WO Type: Project

Due Date: 9/24/2013

Comments:

PA Rush. QC 3 (Summary/No chromatograms). RL of 1 ppm for Chloride and VOC and 0.1 ppm for NO2/NO3. Expected levels provided by client - see

Jenn. J-flag what we can't meet. EIM Locus and EDD-Denison. Email Group.;

Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage
1309255-001A	TW4-29_09122013	9/12/2013 0657h	9/13/2013 1015h	300.0-W	Aqueous	~	df - wc
				1 SEL Analytes: CL			
1309255-001B				NO2/NO3-W-353.2		~	df - no2/no3
	b			1 SEL Analytes: NO3NO2N			
1309255-001C				8260-W		V	VOCFridge
				Test Group: 8260-W-Custon			
1309255-002A	TW4-21_09122013	9/12/2013 0711h	9/13/2013 1015h	300.0-W	Aqueous	~	df - wc
	·-			1 SEL Analytes: CL			
1309255-002B				NO2/NO3-W-353.2		~	df - no2/no3
				1 SEL Analytes: NO3NO2N			
1309255-002C				8260-W		~	VOCFridge
				Test Group: 8260-W-Custon	n; # of Analytes: 4 / # of Surr: 4		
1309255-003A	TW4-10_09122013	9/12/2013 0723h	9/13/2013 1015h	300.0-W	Aqueous	~	df - wc
	·			1 SEL Analytes: CL			
1309255-003B				NO2/NO3-W-353.2		~	df - no2/no3
	2			1 SEL Analytes; NO3NO2N			
1309255-003C				8260-W		~	VOCFridge
				Test Group: 8260-W-Custon	n; # of Analytes: 4 / # of Surr: 4		
1309255-004A	TW4-11_09122013	9/12/2013 0747h	9/13/2013 1015h	300.0-W	Aqueous	~	df - wc
				I SEL Analytes: CL		~	
1309255-004B				NO2/NO3-W-353.2			df - no2/no3
				I SEL Analytes; NO3NO2N			
1309255-004C				8260-W		V	VOCFridge
				Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr:			
1309255-005A	TW4-07_09122013	9/12/2013 0753h	9/13/2013 1015h	300.0-W	Aqueous	~	df - wc
				1 SEL Analytes: CL			
1309255-005B				NO2/NO3-W-353.2		~	df - no2/no3
				1 SEL Analytes: NO3NO2N			
1309255-005C				8260-W		~	VOCFridge
				Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr:			
1309255-006A	TW4-01_09122013	9/12/2013 0800h	9/13/2013 1015h		Aqueous		Cl not received
1309255-006B				NO2/NO3-W-353.2		~	df - no2/no3
				1 SEL Analytes: NO3NO2N			

WORK ORDER Summary Work Order: 1309255

Page 2 of 2

Energy Fuels Resources, Inc. Client:

Due Date: 9/24/2013

Chemt.	Energy 1 dets resources, me.	_		Duc Duce. 7/24/2013								
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage					
1309255 - 006C	TW4-01_09122013	9/12/2013 0800h	9/13/2013 1015h	8260-W	Aqueous	V	VŐCFridge	3				
			Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4									
1309255-007A	TW4-02_09122013	9/12/2013 0807h	9/13/2013 1015h	300.0-W	Aqueous	~	df - wc	1				
				1 SEL Analytes: CL								
1309255-007B				NO2/NO3-W-353.2		✓	df - no2/no3					
			1 SEL Analytes: NO3NO2N									
1309255-007C				8260-W		V	VOCFridge	3				
			Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4									
1309255-008A	TW4-60_09122013	9/12/2013 0845h	9/13/2013 1015h	300.0-W	Aqueous	V	df - wc	1				
				1 SEL Analytes: CL								
1309255-008B				NO2/NO3-W-353.2		✓	df - no2/no3					
			1 SEL Analytes: NO3NO2N									
1309255-008C	-			8260-W		v	VOCFridge	3				
		Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4										
1309255-009A	Trip Blank	9/12/2013	9/13/2013 1015h	8260-W	Aqueous	V	VOCFridge	3				
			Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4									

AMERICAN WEST ANALYTICAL LABORATORIES FAX # (801) 263-8687

PRINT NAME

CHAIN OF CUSTODY

ALL ANALYSIS WILL BE CONDUCTED USING NELAP ACCREDITED METHODS AND ALL DATA WILL BE REPORTED USING 463 W. 3600 S. SALT LAKE CITY, UT 84115 AWAL'S STANDARD ANALYTE LISTS AND REPORTING LIMITS (PQL) UNLESS SPECIFICALLY REQUESTED OTHERWISE ON THIS PHONE # (801) 263-8686 TOLL FREE # (888) 263-8686 PAGE CHAIN OF CUSTODY AND/OR ATTACHED DOCUMENTATION. UNLESS OTHER ARRANGEMENTS HAVE DUE DATE: EMAIL AWAL@AWAL-LABS.COM QC LEVEL: TURN AROUND TIME: BEEN MADE, SIGNED REPORTS WILL BE EMAILED BY 5:00 PM ON THE DAY 3 STANDARD WWW.AWAL-LABS.COM THEY ARE DUE. LABORATORY USE ONLY Energy Fuels Resources, Inc. INCLUDE EDD: LOCUS UPLOAD 6425 S. Hwy. 191 ADDRESS: EXCEL FIELD FILTERED FOR: Blanding, UT 84511 Garrin Palmer CONTACT: 2 AMBIENT OF CHILLES FOR COMPLIANCE WITH: (435) 678-2221 PHONE #: □ NELAP gpalmer@energyfuels.com; KWeinel@energyfuels.com; RCRA EMAIL: dturk@energyfuels.com CWA RECEIVED BROKEN/LEAKING SDWA (IMPROPERLY SEALED) 3rd Ouarter Chloroform 2013 PROJECT NAME: ELAP / A2LA NLLAP 300.0) PROJECT #: NON-COMPLIANCE PROPURLY PRESERVED NO2/NO3 (353.2) OTHER: (8260C) PO #: 9 Tanner Holliday, Garrin Palmer (4500 SAMPLER NAME: RECEIVED WITHIN KNOWN HAZARDS VOCs DATE TIME \ddot{c} SAMPLE ID: SAMPLED SAMPLED SAMPLE COMMENTS TW4-29_09122013 X 9/12/2013 657 X X 2 TW4-21_09122013 9/12/2013 711 X X X COC TAPE WAS: ENERGINT ON OUTER PACKAGE 3 TW4-10 09122013 9/12/2013 723 X X X 4 TW4-11 09122013 9/12/2013 747 X X X CREROKEN ON OUTER PACKAGE Y 5 TW4-07 09122013 9/12/2013 753 X X X * Bettle ter C 3 PRESENT ON SAMPLE 6 TW4-01_09122013 9/12/2013 800 X X ŃΑ 7 TW4-02_09122013 9/12/2013 807 X X X UNBROKEN ON SAMPLE TW4-60 09122013 9/12/2013 X X X TRIP BLANK 9/12/2013 X DISCREPANCES BETWEEN SAMPLE LABELS AND COC RECORD? TEMP BLANK 9/12/2013 DATE: RELINQUISHED BY: 9/12/13 RECEIVED BY Darrer Hollida SPECIAL INSTRUCTIONS: SIGNATURE SIGNATURE TIME: PRINT NAME: PRINT NAME: See the Analytical Scope of Work for Reporting Limits and RELINQUISHED BY: RECEIVED BY DATE DATE: SIGNATURE SIGNATURE VOC analyte list. TIME TIME; PRINT NAME: PRINT NAME RELINQUIEND BY: DATE: RECEIVED BY: DATE: SIGNATURE SIGNATURE TIME: RELINQUISHED BY: DATE: SIGNATURE

AWAL - Analytical Scope of Work White Mesa Mill Blanding Utah Page 11 of 13

Analytical Methods	Reporting Limit	Maximum Holding	Sample Preservation	Sample Temperature
to be Used		Times	Requirements	Requirements
AND MARKET AND A		STATE OF THE STATE	(24 CM C++ 98) W	des de deservir
A4500-Cl	1 mg/L	28 days	None	≤6°C
B or				
A4500-CI				
E	_		1	
	\sim	\leftarrow		
	1 mg/L	28 days	None	≤6°C
	1			
The state of the s				
				₹6°C
		14 days	None	
		12.134	No.	Logica de la
The same section and section 1	1.0 μg/L	14 days	HCl to pH<2	≤6°C
1.00.01				
				-0.5
0.3.4 0.2.4 0.30	1.0 μg/L	14 days	HCl to pH<2	≤6°C
	ĺ			
	10 /		77.01	
100 0 C 10000 101 0 100	1.0 μg/L	14 days	HCI to pH<2	≤6°C
	1.0 7	1111	TIGI : II O	
	1.0 μg/L	14 days	HCI to pH<2	≤6°C
	Only	Built Contract	68/1 15 15 15 15 15 15 15 15 15 15 15 15 15	100 0 0 0 P 1 5 V 1
		7/40 dove	None	≤6°C
				≤6°C
		7/40 days 7/40 days		≤6°C
CINICOLNI		1 774U (IAVS 1	None	_ ≥0 C
SW8270D	<10 ug/L			2000
SW8270D	<10 ug/L	7/40 days	None	≤6°C
				≤6°C ≤6°C ≤6°C
	A4500-Cl B or A4500-Cl E or E300.0 A4500-S04 E or E300.0 A2320 B A2320 B A2320 B A2320 B Or SW8260B Or SW8260B Or SW8260C SW8260B Or SW8260C SW8260B Or SW8260C SW8260B Or SW8260C	Methods to be Used	Methods to be Used	Methods to be Used Limit to

Preservation Check Sheet

Same	olo	Cot	Extension	bae r	nH
Sami	me	Set	LAUCHSIUI	Lauu	DIA

									ISIUIL ALIC	PAA		 	 		
Analysis	Preservative	-001	-002	-003	-001)	-005	-006	-007	-008						
Ammonia	pH <2 H ₂ SO ₄														
COD	pH <2 H ₂ SO ₄														
Cyanide	pH >12 NaOH														
Metals	pH <2 HNO ₃	iii													
NO ₂ & NO ₃	pH <2 H ₂ SO ₄	ves	VRS	Ves	Ves	185	Nes	ives	ues						
O&G	pH <2 HCL	17	F	1	1	1	1	1							
Phenols	pH <2 H ₂ SO ₄														
Sulfide	pH > 9NaOH, Zn Acetate														
TKN	pH <2 H ₂ SO ₄														
T PO ₄	pH <2 H ₂ SO ₄														
									Ä)						
		-													
											,				
		ļ													
		1	-												
T PO ₄	pH <2 H ₂ SO ₄								A1						

Procedure:

- 1) Pour a small amount of sample in the sample lid
- 2) Pour sample from Lid gently over wide range pH paper
- 3) Do Not dip the pH paper in the sample bottle or lid
- 4) If sample is not preserved, properly list its extension and receiving pH in the appropriate column above
- 5) Flag COC, notify client if requested
- 6) Place client conversation on COC
- 7) Samples may be adjusted

Frequency:

All samples requiring preservation

- * The sample required additional preservative upon receipt.
- The sample was received unpreserved
- ▲ The Sample was received unpreserved and therefore preserved upon receipt.
- # The sample pH was unadjustable to a pH < 2 due to the sample matrix
- The sample pH was unadjustable to a pH > ____ due to the sample matrix interference

Garrin Palmer Energy Fuels Resources, Inc. 6425 S. Hwy 191 Blanding, UT 84511

TEL: (435) 678-2221

RE: 3rd Quarter Chloroform 2013

Dear Garrin Palmer:

Lab Set ID: 1309328

463 West 3600 South 3alt Lake City, UT 84115

American West Analytical Laboratories received 1 sample(s) on 9/18/2013 for the analyses presented in the following report.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 American West Analytical Laboratories (AWAL) is accredited by The National Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is state accredited in Colorado, Idaho, New Mexico, and Missouri.

Fax: (801) 263-8687

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Thank You.

Kyle F. Digitally signed by Kyle F. Gross DN: cn=Kyle F. Gross, o=AWAL, ou=AWAL-Laboratory Director, email=kyle@awal-labs.com, c=US Date: 2013.09 24 15:07:31 -06'00'

Approved by:

Laboratory Director or designee

SAMPLE SUMMARY

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Set ID:

1309328

Date Received:

9/18/2013 0930h

Lab Sample ID Client Sample ID Date Collected Matrix Analysis

463 West 3600 South 3alt Lake City, UT 84115

1309328-001A TW4-01_09122013

9/12/2013 0800h Aq

Aqueous Anions, E300.0

Contact: Garrin Palmer

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha

QA Officer

Inorganic Case Narrative

Client: Contact:

Energy Fuels Resources, Inc.

Garrin Palmer

Project: Lab Set ID:

preserved.

3rd Quarter Chloroform 2013

1309328

463 West 3600 South Salt Lake City, UT 84115 **Sample Receipt Information:**

Date of Receipt:

9/18/2013

Date of Collection:

9/12/2013

Sample Condition:

Intact

C-O-C Discrepancies:

None

Toll Free: (888) 263-8686

Phone: (801) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

.....

web: www.awal-labs.com

Preparation and Analysis Requirements: The samples were analyzed following the methods stated on the analytical reports.

Holding Time and Preservation Requirements: The analysis and preparation of all

samples were performed within the method holding times. All samples were properly

Analytical QC Requirements: All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Kyle F. Gross Laboratory Director

Batch QC Requirements: MB, LCS, MS, MSD, RPD:

Jose Rocha QA Officer Method Blanks (MB): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Samples (LCS): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicates (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, indicating no apparent matrix interferences.

Corrective Action: None required.

American West

Lab Set ID: 1309328

Client:

Project:

Energy Fuels Resources, Inc.

3rd Quarter Chloroform 2013

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact:

Garrin Palmer

Dept: WC

QC Type: LCS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	LCS-R59331	Date Analyzed:	09/19/2013	0454h										
Test Code:	300.0-W													
Chloride		4.57	mg/L	E300.0	0.0114	0.100	5.000	0	91.5	90 - 110				

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1309328

Client:

Project: 3rd Quarter Chloroform 2013

Contact: Garrin Palmer

Dept: WC

QC Type: MBLK

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	MB-R59331	Date Analyzed:	09/19/2013	0431h										
Test Code:	300.0-W													
Chloride		< 0.100	mg/L	E300.0	0.0114	0.100								

Lab Set ID: 1309328

Client:

Project:

Energy Fuels Resources, Inc.

3rd Quarter Chloroform 2013

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Garrin Palmer WC

Dept: WC

QC	Type:	MS

Contact:

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1309328-	-001AMS	Date Analyzed:	09/19/2013	1853h										
Test Code: 300.0-W														
Chloride		502	mg/L	E300.0	1.14	10.0	500.0	37.6	92.8	90 - 110				

Lab Set ID: 1309328

Energy Fuels Resources, Inc.

3rd Quarter Chloroform 2013

Client:

Project:

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact:

Garrin Palmer

Dept: WC

QC Type: MSD

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	1309328-001AMSD	Date Analyzed:	09/19/2013	1916h										
Test Code:	300.0-W													
Chloride		493	mg/L	E300.0	1.14	10.0	500.0	37.6	91.1	90 - 110	502	1.78	20	

Work Order: 1309328

Page 1 of 1

Client:

Energy Fuels Resources, Inc.

Due Date: 9/27/2013

Client ID:

DEN100

WORK ORDER Summary

Contact:

Garrin Palmer

Project:

3rd Quarter Chloroform 2013

QC Level: Ш WO Type: Project

Comments:

PA Rush. QC 3 (Summary/No chromatograms). RL of 1 ppm for Chloride. EIM Locus and EDD-Denison. Email Group.;

Client Sample ID **Collected Date Received Date Test Code** Matrix Sel Storage Sample ID ~ TW4-01_09122013 9/12/2013 0800h 9/18/2013 0930h 300.0-W df-wc 1309328-001A Aqueous I SEL Analytes: CL

Client:

Address:

Phone #:

Project Name:

Sampler Name:

TW4-01_09122013

Project #:

PO #:

American West

CHAIN OF CUSTODY

Discrepancies Between Sample Labels and COC Record?

Analytical Laboratories 463 W. 3600 S. Sait Lake City, UT 84115 AWAL Lab Sample Set # All analysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and reporting limits (PQL) unless specifically requested otherwise on this Chain of Custody and/or attached documentation. Page Phone # (801) 263-8686 Toll Free # (888) 263-8686 Due Date: QC Level: **Turn Around Time:** Unless other arrangements have been made signed reports will be emailed by 5:00 pm on www.awai-labs.com 3 Standard the day they are due. Laboratory Use Only Energy Fuels Resources, Inc. Include EDD: LOCUS UPLOAD 6425 S. Hwy. 191 EXCEL Field Filtered For: Blanding, UT 84511 Contact: Garrin Palmer For Compliance With: (435) 678-2221 □ NELAP
□ RCRA Temperature gpalmer@energyfuels.com; KWeinel@energyfuels.com; □ CWA Email: dturk@energyfuels.com 4 Received Broken/Leaking □ SDWA (improperly Sealed) 3rd quarter chloroform 2013 □ ELAP/A2LA □ NLLAP CI (4500 or 300.0) Non-Compliance NO2/NO3 (353.2) Other: VOCs (8260C) Tanner Holliday, Garrin Palmer Received Within Known Hazards Date Time ō Sample Comments Sample ID: Sampled Sampled 9/12/2013 800 x COC Tape Was: 1 Present on Outer Package 2 Unbroken on Outer Package 3 Present on Sample 4 Unbroken on Sample

		+ ++++		
Relinguished by: Court Palv	Date: 9/17/13	Received by:	Date:	Special Instructions:
Print Name: Garrin Palmer	Time:	Print Name:	Time:	
Relinquished by: Signature	Date:	Received by Steparting Line Hay	Dute 9/18/13	See the Analytical Scope of Work for Reporting Limits and VO analyte list.
Print Name:	Time:	Print Name Ima Harris	Time: 930	
Relinquished by: Signature	Date:	Received by: Signature	Date:	
Print Name:	Time:	Print Name:	Time:	
Relinquished by: Signature	Dale:	Received by: Signature	Date:	
Print Name:	Time:	Print Name:	Time:	

Garrin Palmer
Energy Fuels Resources, Inc.
6425 S. Hwy 191

Blanding, UT 84511 TEL: (435) 678-2221

RE: 3rd Quarter Chloroform Re-Sample

Dear Garrin Palmer:

Lab Set ID: 1309526

463 West 3600 South Salt Lake City, UT 84115

American West Analytical Laboratories received 2 sample(s) on 9/27/2013 for the analyses presented in the following report.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 American West Analytical Laboratories (AWAL) is accredited by The National Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is state accredited in Colorado, Idaho, New Mexico, and Missouri.

e-mail: awal@awal-labs.com

Fax: (801) 263-8687

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Thank You.

Digitally signed by Jose G, Rocha
DN: cn=Jose G, Rocha, o=American West Analytical Laboratories, ou=Quality
Assurance Officer,
email=jose@awal-labs.com, c=US
Date: 2013.09.30 12:59:09

Approved by:

Laboratory Director or designee

SAMPLE SUMMARY

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform Re-Sample

Lab Set ID:

1309526

Date Received:

9/27/2013 1010h

463 West 3600 South Salt Lake City, UT 84115

Lab Sample ID	Client Sample ID	Date Collected	Matrix	Analysis
1309526-001A	TW4-29_09262013	9/26/2013 713	h Aqueous	Anions, E300.0
1309526-001B	TW4-29_09262013	9/26/2013 713	h Aqueous	Nitrite/Nitrate (as N), E353.2
1309526-001C	TW4-29_09262013	9/26/2013 713	h Aqueous	VOA by GC/MS Method 8260C/5030C
1309526-002A	Trip Blank	9/26/2013	Aqueous	VOA by GC/MS Method 8260C/5030C

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 9/30/2013 Page 2 of 15

Inorganic Case Narrative

Client: Contact:

Energy Fuels Resources, Inc.

Garrin Palmer

Project:

3rd Quarter Chloroform Re-Sample

Lab Set ID:

1309526

463 West 3600 South 3alt Lake City, UT 84115 **Sample Receipt Information:**

Date of Receipt:

9/27/2013

Date of Collection:

9/26/2013

Sample Condition:

Intact

C-O-C Discrepancies:

None

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Holding Time and Preservation Requirements: The analysis and preparation for the samples were performed within the method holding times. The samples were properly preserved.

Preparation and Analysis Requirements: The samples were analyzed following the methods stated on the analytical reports.

Analytical QC Requirements: All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Kyle F. Gross Laboratory Director

Batch QC Requirements: MB, LCS, MS, MSD, RPD:

Method Blanks (MB): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Jose Rocha QA Officer

Laboratory Control Samples (LCS): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicates (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, with the following exception: On sample 1309526-001B, the MS/MSD percent recoveries for Nitrate/Nitrite (as N) were outside of their control limits due to sample matrix interference.

Corrective Action: None required.

Volatile Case Narrative

Client: Contact: Energy Fuels Resources, Inc.

Garrin Palmer

Project: Lab Set ID: 3rd Quarter Chloroform Re-Sample

1309526

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Fax: (801) 263-8687

Toll Free: (888) 263-8686

Sample Receipt Information:

Date of Receipt:

9/27/2013

Date(s) of Collection:

9/26/2013

Sample Condition: C-O-C Discrepancies: Intact

Method:

None SW-846 8260C/5030C

Analysis:

Volatile Organic Compounds

General Set Comments: Chloroform was detected above reporting limits on sample

1309526-001C.

e-mail: awal@awal-labs.com web: www.awal-labs.com

Holding Time and Preservation Requirements: All samples were received in appropriate containers and properly preserved. The analysis and preparation of all samples were performed within the method holding times following the methods stated on the analytical

reports.

Kyle F. Gross Laboratory Director

Analytical QC Requirements: All instrument calibration and calibration check

requirements were met. All internal standard recoveries met method criterion.

Jose Rocha **QA** Officer

Batch QC Requirements: MB, LCS, MS, MSD, RPD, and Surrogates:

Method Blanks (MBs): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Sample (LCSs): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicate (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, indicating no apparent matrix interferences.

Surrogates: All surrogate recoveries were within established limits.

Corrective Action: None required.

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Contact:

Garrin Palmer

Lab Set ID: 1309526

Client:

Dept: WC

Project: 3rd Quarter Chloroform Re-Sample

QC Type: LCS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	LCS-R59595 300.0-W	Date Analyzed:	09/27/2013	1520h										
Chloride		4.62	mg/L	E300.0	0.0114	0.100	5.000	0	92.4	90 - 110				
Lab Sample ID: Test Code:	LCS-R59593 NO2/NO3-W-353.2	Date Analyzed:	09/27/2013	1856h										
Nitrate/Nitrite (as	(N)	1.01	mg/L	E353.2	0.00252	0.100	1.000	0	101	90 - 110				

American West

Lab Set ID: 1309526

Client:

Project:

Energy Fuels Resources, Inc.

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross
Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact:

Dept: WC

Garrin Palmer

3rd Quarter Chloroform Re-Sample QC Type: MBLK

Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Date Analyzed:	09/27/2013	1457h										
< 0.100	mg/L	E300.0	0.0114	0.100								
Date Analyzed:	09/27/2013	1853h										
< 0.100	mg/L	E353.2	0.00252	0.100								
	Date Analyzed: < 0.100 Date Analyzed:	Date Analyzed: 09/27/2013 < 0.100 mg/L Date Analyzed: 09/27/2013	Date Analyzed: 09/27/2013 1457h < 0.100 mg/L E300.0 Date Analyzed: 09/27/2013 1853h	Date Analyzed: 09/27/2013 1457h < 0.100 mg/L E300.0 0.0114 Date Analyzed: 09/27/2013 1853h	Result Units Method MDL Limit Date Analyzed: 09/27/2013 1457h	Result Units Method MDL Limit Spiked Date Analyzed: 09/27/2013 1457h < 0.100	Result Units Method MDL Limit Spiked Amount Date Analyzed: 09/27/2013 1457h 40.100 0.1	Result Units Method MDL Limit Spiked Amount %REC Date Analyzed: 09/27/2013 1457h 40.100 0.10	Result Units Method MDL Limit Spiked Amount %REC Limits Date Analyzed: 09/27/2013 1457h 40.100 0.1	Result Units Method MDL Limit Spiked Amount %REC Limits Amt Date Analyzed: 09/27/2013 1457h 40.100 0.100 0.0114 0.100 0.10	Result Units Method MDL Limit Spiked Amount %REC Limits Amt % RPD Date Analyzed: 09/27/2013 1457h 40.100 0.100	Result Units Method MDL Limit Spiked Amount %REC Limits Amt % RPD Limit Date Analyzed: 09/27/2013 1457h 40.100 0.100 0.0114 0.100 0.10

American West

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1309526

ab Set 1D. 1307320

Client:

Project: 3rd Quarter Chloroform Re-Sample

Contact: Garrin Palmer

Dept: WC

QC Type: MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1309526-001AN Test Code: 300.0-W	S Date Analyzed:	09/27/2013	1607h										
Chloride	89.5	mg/L	E300.0	0.114	1.00	50.00	41.4	96.3	90 - 110				
Lab Sample ID: 1309526-001BM Test Code: NO2/NO3-W-35		09/27/2013	1917h										
Nitrate/Nitrite (as N)	16.7	mg/L	E353.2	0.0252	1.00	10.00	4.18	125	90 - 110				7.

^{&#}x27;- Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

OC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1309526

Client:

Project: 3rd Quarter Chloroform Re-Sample

Garrin Palmer Contact:

WC Dept:

QC Type: MSD

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1309526-001AMSD 300.0-W	Date Analyzed:	09/27/2013	1630h										
Chloride		87.0	mg/L	E300.0	0.114	1.00	50.00	41.4	91.3	90 - 110	89.5	2.83	20	
Lab Sample ID: Test Code:	1309526-001BMSD NO3 NO2/NO3-W-353.2	Date Analyzed:	09/27/2013	1919h										
Nitrate/Nitrite (as	N)	18.1	mg/L	E353.2	0.0252	1.00	10.00	4.18	139	90 - 110	16.7	7.80	10).

^{&#}x27; - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

American West

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross
Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1309526

Eab Set 115. 1307320

Client:

Project: 3rd Quarter Chloroform Re-Sample

Contact: Garrin Palmer

Dept: MSVOA

QC Type: LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: LCS VOC 092713A Test Code: 8260-W	Date Analyzed:	09/27/2013	659h										
Chloroform	21.9	μg/L	SW8260C	0.277	2.00	20.00	0	109	67 - 132				
Methylene chloride	19.8	μg/L	SW8260C	0.155	2.00	20.00	0	98.8	32 - 185				
Surr: 1,2-Dichloroethane-d4	49.1	μg/L	SW8260C			50.00		98.1	76 - 138				
Surr: 4-Bromofluorobenzene	54.2	μg/L	SW8260C			50.00		108	77 - 121				
Surr: Dibromofluoromethane	53.4	μg/L	SW8260C			50.00		107	67 - 128				
Surr: Toluene-d8	54.3	µg/L	SW8260C			50.00		109	81 - 135				

American West

Lab Set ID: 1309526

Energy Fuels Resources, Inc.

3rd Quarter Chloroform Re-Sample

Client:

Project:

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Garrin Palmer

Dept: MSVOA

QC Type: MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC 092713A Test Code: 8260-W	Date Analyzed:	09/27/2013	735h										
Carbon tetrachloride	< 1.00	μg/L	SW8260C	0.137	1.00								
Chloroform	< 1.00	μg/L	SW8260C	0.277	1.00								
Chloromethane	< 3.00	μg/L	SW8260C	0.127	3.00								
Methylene chloride	< 1.00	μg/L	SW8260C	0.155	1.00								
Surr: 1,2-Dichloroethane-d4	50.5	μg/L	SW8260C			50.00		101	76 - 138				
Surr: 4-Bromofluorobenzene	57.2	μg/L	SW8260C			50.00		114	77 - 121				
Surr: Dibromofluoromethane	52,8	μg/L	SW8260C			50.00		106	67 - 128				
Surr: Toluene-d8	56.5	µg/L	SW8260C			50.00		113	81 - 135				

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1309526

Client:

American West

Project: 3rd Quarter Chloroform Re-Sample

Garrin Palmer Contact:

MSVOA Dept:

QC Type: MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1309526-001CMS Test Code: 8260-W	Date Analyzed:	09/27/2013	1348h										
Chloroform	453	μg/L	SW8260C	2.77	20.0	200.0	246	104	50 - 146				
Methylene chloride	199	μg/L	SW8260C	1.55	20.0	200.0	0	99.4	30 - 192				
Surr: 1,2-Dichloroethane-d4	521	μg/L	SW8260C			500.0		104	72 - 151				
Surr: 4-Bromofluorobenzene	532	μg/L	SW8260C			500.0		106	80 - 128				
Surr: Dibromofluoromethane	548	μg/L	SW8260C			500.0		110	80 - 124				
Surr: Toluene-d8	526	μg/L	SW8260C			500.0		105	77 - 129				

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1309526

Client:

Project: 3rd Quarter Chloroform Re-Sample

Garrin Palmer **Contact:**

Dept: **MSVOA**

QC Type: MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1309526-001CMSD Test Code: 8260-W	Date Analyzed:	09/27/2013	1406h										
Chloroform	472	μg/L	SW8260C	2.77	20.0	200.0	246	113	50 - 146	453	4.02	25	
Methylene chloride	208	μg/L	SW8260C	1.55	20.0	200.0	0	104	30 - 192	199	4.77	25	
Surr: 1,2-Dichloroethane-d4	529	μg/L	SW8260C			500.0		106	72 - 151				
Surr: 4-Bromofluorobenzene	545	μg/L	SW8260C			500.0		109	80 - 128				
Surr: Dibromofluoromethane	545	µg/L	SW8260C			500.0		109	80 - 124				
Surr: Toluene-d8	527	μg/L	SW8260C			500.0		105	77 - 129				

American West Analytical Laboratories

RUSH

WORK ORDER Summary

Work Order: 1309526

Page 1 of 1

Client:

Energy Fuels Resources, Inc.

Due Date: 9/30/2013

Client ID:

DEN100

Contact:

Garrin Palmer

Project:

3rd Quarter Chloroform Re-Sample

QC Level: III

WO Type: Project

Comments:

Next Day Rush. QC 3 (Summary/No chromatograms). RL of 1 ppm for Chloride and VOC and 0.1 ppm for NO2/NO3. Expected levels provided by client -

see Jenn. J-flag what we can't meet. EIM Locus and EDD-Denison. Email Group.;

		6.11.1.12.1		T . C .				
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
1309526-001A	TW4-29_09262013	9/26/2013 0713h	9/27/2013 1010h	300.0-W	Aqueous	V	df - wc	1
			-,	1 SEL Analytes: (CL			
1309526-001B				NO2/NO3-W-353.2		V	df - no2/no3	
				I SEL Analytes: 1	NO3NO2N			
1309526-001C	·			8260-W		V	VOCFridge	3
-				Test Group: 8260	-W-Custom; # of Analytes: 4 / # of	Surr: 4		
1309526-002A	Trip Blank	9/26/2013	9/27/2013 1010h	8260-W	Aqueous	✓	VOCFridge	3
				Test Group: 8260	P-W-Custom; # of Analytes: 4 / # of	Surr: 4		

HOK

Signature Print Name

American West **Analytical Laboratories**

CHAIN OF CUSTODY

463 W. 3600 S. Salt Lake City, UT 84115 AWAL Lab Sample Set # All analysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and reporting limits (PQL) unless specifically requested otherwise on this Chain of Custody and/or attached documentation Page Phone # (801) 263-8686 Toll Free # (888) 263-8686 Turn Around Time: Next Day Rust 2 Der Kathy Weivel Next Day Rust 2 Deg 12/13 Due Date: Fax # (801) 263-8687 Email awal@awal-labs.com QC Level: Unless other arrangements have been made, signed reports will be emalled by 5:00 pm on 3 the day they are due. www.awal-labs.com Laboratory Use Only Energy Fuels Resources, Inc. Include EDD: LOCUS UPLOAD Address: 6425 S. Hwy. 191 EXCEL Samples Were: Field Filtered For: Blanding, UT 84511 Contact: Garrin Palmer For Compliance With: (435) 678-2221 Cell #: Phone #: □ NELAP gpalmer@energyfuels.com; KWeinel@energyfuels.com; □ RCRA □ CWA Emall: dturk@energyfuels.com Received Broken/Leaking SDWA Project Name: 3rd Quarter Chloroform Re-Sample (Improperty Sealed) ☐ ELAP/A2LA ☐ NLLAP C1 (4500 or 300.0) Project #: NO2/NO3 (353.2) ☐ Non-Compliance Properly Preserved Other: (8260C) Sampler Name: Garrin Palmer, Tanner Holliday 6 Received Within Known Hazards VOCS Date Time Sample ID: Sampled Sampled Sample Comments 9/26/2013 TW4-29_09262013 713 x x x Trip Blank 9/26/2013 x COC Tapa Was: seem on Outer Package Temp Blank Untroken on Outer Package 3 Present on Sample 4 Unbroken on Sample Discrepancies Between Sample Labels and COC Record? B927 3 9/26/13 Special Instructions: 1300 See the Analytical Scope of Work for Reporting Limits and VOC Relinquished by: Signature analyte list. Print Name Print Name: Relinquished by: Signature Signature Print Name: Relinquished by:

AWAL - Analytical Scope of Work White Mesa Mill Blanding Utah Page 11 of 13

Contaminant	Analytical Methods	Reporting Limit	Maximum Holding	Sample Preservation	Sample Temperature
	to be Used	- W.S. Ey E.S.	Times	Requirements	Requirements
Second Transporter	Attack	1 - 5 3 10	F-7-28-1		1 4
General Inorganics Chloride	A4500-C1	1 mg/L	28 days	None	≤6°C
Chloride	B or	I mg/L	26 days	None	≥0.6
	A4500-CI				
	E				
	or E300.0				
Sulfate	A4500-	1 mg/L	28 days	None	≤6°C
	SO4 E or	1	20 44.	Trono	1 - 0 0
	E300.0				
Carbonate as CO3	A2320 B	1 mg/L	14 days	None	≥6°C
Dicarbonate as HCO3	A2320 B	1 mg/L	14 days	None	
Volatile Organic Compound				Visitoria di il	Association of
Carbon Tetrachloride	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
	or	1.8.2			
	SW8260C				
Chloroform	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
	or			meet to par -	
	SW8260C				
Dichloromethane	SW8260B	1.0 µg/L	14 days	HCl to pH<2	≤6°C
(Methylene Chloride)	or			^	
	SW8260C				
Chloromethane	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
	or			-	
	SW8260C				
SVOCs - Tailings Impound	ment Samples	Only	A15 = 1880		the times /
1,2,4-Trichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1,2-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1,3-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None /	≤6°C
1,4-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1-Methylnaphthalene	SW8270D	<10 ug/L	7/40 days	Mone	≤6°C
2,4,5-Trichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4,6-Trichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4-Dichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4-Dimethylphenol	SW8270D	<10.ug/L	1/40 days	None	≤6°C
2,4-Dinitrophenol	SW8270D	<20 ug/K	7/40 days	None	≤6°C
2,4-Dinitrotoluene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,6-Dinitrotoluene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Chloronaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Chlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Methylnaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Methylphenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Nitrophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
3&4-Methylphenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
3,3'-Dichlorobenzidine	SW8270D	<10 ug/L	7/40 days	None	≤6°C

Preservation Check Sheet

Sample Set Extension and pH

					 miphe D	Ct L'Atti	ision an	u pri					
Analysis	Preservative	1001											
Ammonia	pH <2 H ₂ SO ₄												
COD	pH <2 H ₂ SO ₄												
Cyanide	pH >12 NaOH												
Metals	pH <2 HNO ₃												
NO ₂ & NO ₃	pH <2 H ₂ SO ₄	1169											
O&G	pH <2 HCL	17											
Phenols	pH <2 H ₂ SO ₄					-							
Sulfide	pH > 9NaOH, Zn Acetate												
TKN	pH <2 H ₂ SO ₄												
T PO ₄	pH <2 H ₂ SO ₄												
				-							-		
			3										

Procedure:

- 1) Pour a small amount of sample in the sample lid
- 2) Pour sample from Lid gently over wide range pH paper
- 3) Do Not dip the pH paper in the sample bottle or lid
- 4) If sample is not preserved, properly list its extension and receiving pH in the appropriate column above
- 5) Flag COC, notify client if requested
- 6) Place client conversation on COC
- 7) Samples may be adjusted

Frequency:

All samples requiring preservation

- * The sample required additional preservative upon receipt.
- + The sample was received unpreserved
- ▲ The Sample was received unpreserved and therefore preserved upon receipt.
- # The sample pH was unadjustable to a pH < 2 due to the sample matrix
- The sample pH was unadjustable to a pH > ____ due to the sample matrix interference

Garrin Palmer Energy Fuels Resources, Inc. 6425 S. Hwy 191 Blanding, UT 84511

TEL: (435) 678-2221

RE: 3rd Quarter Chloroform 2013

Dear Garrin Palmer:

Lab Set ID: 1308555

463 West 3600 South Salt Lake City, UT 84115

American West Analytical Laboratories received 10 sample(s) on 8/30/2013 for the analyses presented in the following report.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 American West Analytical Laboratories (AWAL) is accredited by The National Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is

state accredited in Colorado, Idaho, New Mexico, and Missouri.

Fax: (801) 263-8687 ≥-mail: awal@awal-labs.com

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any

web: www.awal-labs.com

questions or concerns regarding this report please feel free to call.

Kyle F. Gross Laboratory Director intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is

Jose Rocha

OA Officer

Thank You,

Digitally signed by Jose G. c=US Date: 2013,09,11 14:32:02

figures for quality control and calculation purposes.

Rocha DN: cn=Jose G, Rocha, o=American West Analytical Laboratories, ou=Quality

Approved by:

Laboratory Director or designee

SAMPLE SUMMARY

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

3rd Quarter Chloroform 2013

Lab Set ID:

1308555

Date Received:

8/30/2013 0945h

	Lab Sample ID	Client Sample ID	Date Collec	cted	Matrix	Analysis
463 West 3600 South	1308555-001A	TW4-03R 08282013	8/28/2013	0933h	Aqueous	Anions, E300.0
Salt Lake City, UT 84115	1308555-001B	TW4-03R_08282013	8/28/2013	0933h	Aqueous	Nitrite/Nitrate (as N), E353.2
7	1308555-001C	TW4-03R_08282013	8/28/2013	0933h	Aqueous	VOA by GC/MS Method 8260C/5030C
Phone: (801) 263-8686	1308555-002A	TW4-12_08292013	8/29/2013	0715h	Aqueous	Anions, E300.0
	1308555-002B	TW4-12_08292013	8/29/2013	0715h	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686 Fax: (801) 263-8687	1308555-002C	TW4-12_08292013	8/29/2013	0715h	Aqueous	VOA by GC/MS Method 8260C/5030C
e-mail: awal@awal-labs.com	1308555-003A	TW4-13_08292013	8/29/2013	0721h	Aqueous	Anions, E300.0
	1308555-003B	TW4-13_08292013	8/29/2013	0721h	Aqueous	Nitrite/Nitrate (as N), E353.2
web; www.awal-labs.com	1308555-003C	TW4-13_08292013	8/29/2013	0721h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1308555-004A	TW4-14_08292013	8/29/2013	0729h	Aqueous	Anions, E300.0
Kyle F. Gross	1308555-004B	TW4-14_08292013	8/29/2013	0729h	Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	1308555-004C	TW4-14_08292013	8/29/2013	0729h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1308555-005A	TW4-27_08292013	8/29/2013	0735h	Aqueous	Anions, E300.0
Jose Rocha	1308555-005B	TW4-27_08292013	8/29/2013	0735h	Aqueous	Nitrite/Nitrate (as N), E353.2
QA Officer	1308555-005C	TW4-27_08292013	8/29/2013	0735h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1308555-006A	TW4-28_08292013	8/29/2013	0743h	Aqueous	Anions, E300.0
	1308555-006B	TW4-28_08292013	8/29/2013	0743h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1308555-006C	TW4-28_08292013	8/29/2013	0743h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1308555-007A	TW4-30_08292013	8/29/2013	0751h	Aqueous	Anions, E300.0
	1308555-007B	TW4-30_08292013	8/29/2013	0751h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1308555-007C	TW4-30_08292013	8/29/2013	0751h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1308555-008A	TW4-65_08292013	8/29/2013	0700h	Aqueous	Anions, E300.0
	1308555-008B	TW4-65_08292013	8/29/2013	0700h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1308555-008C	TW4-65_08292013	8/29/2013	0700h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1308555-009A	TW4-03_08292013	8/29/2013	0700h	Aqueous	Anions, E300.0
	1308555-009B	TW4-03_08292013	8/29/2013	0700h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1308555-009C	TW4-03_08292013	8/29/2013	0700h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1308555-010A	Trip Blank	8/28/2013		Aqueous	VOA by GC/MS Method 8260C/5030C

Inorganic Case Narrative

Client: Contact: Project:

Lab Set ID:

Energy Fuels Resources, Inc.

Garrin Palmer

3rd Quarter Chloroform 2013

All instrument calibration and calibration check

1308555

463 West 3600 South Salt Lake City, UT 84115 **Sample Receipt Information:**

8/30/2013

Date of Receipt:

8/28 & 8/29/2013

Date(s) of Collection: Sample Condition:

Intact

C-O-C Discrepancies:

Analytical QC Requirements:

None

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

samples were performed within the method holding times. The samples were properly preserved.

Holding Time and Preservation Requirements: The analysis and preparation for the

www.awar-1abs.com

Preparation and Analysis Requirements: The samples were analyzed following the methods stated on the analytical reports.

requirements were met. All internal standard recoveries met method criterion.

e F. Gross

Batch QC Requirements: MB, LCS, MS, MSD, RPD, DUP:

Kyle F. Gross Laboratory Director

Method Blanks (MB): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Jose Rocha QA Officer

Laboratory Control Samples (LCS): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicates (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, with the following exceptions: The MS and MSD percent recoveries for nitrate/nitrite were outside of control limits on sample 1308555-004B due to sample matrix interference.

Duplicate (DUP): The parameters that required a duplicate analysis had RPDs within the control limits.

Corrective Action: None required.

Volatile Case Narrative

Client: Contact: Energy Fuels Resources, Inc. Garrin Palmer

Project:

3rd Ouarter Chloroform 2013

Lab Set ID:

1308555

463 West 3600 South Salt Lake City, UT 84115 **Sample Receipt Information:**

Date of Receipt:

8/30/2013

Date(s) of Collection:

8/28 & 8/29/2013

Sample Condition: C-O-C Discrepancies: Intact

Method:

None SW-846 8260C/5030C

Analysis:

Volatile Organic Compounds

Fax: (801) 263-8687

Phone: (801) 263-8686

Toll Free: (888) 263-8686

e-mail: awal@awal-labs.com

web: www.awal-labs.com

General Set Comments: No target analytes were observed above reporting limits.

Holding Time and Preservation Requirements: All samples were received in appropriate containers and properly preserved. The analysis and preparation of all samples were performed within the method holding times following the methods stated on the analytical reports.

Kyle F. Gross Laboratory Director

All instrument calibration and calibration check Analytical QC Requirements:

requirements were met. All internal standard recoveries met method criterion.

Jose Rocha QA Officer

Batch QC Requirements: MB, LCS, MS, MSD, RPD, and Surrogates:

Method Blanks (MBs): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Sample (LCSs): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicate (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, indicating no apparent matrix interferences.

Surrogates: All surrogate recoveries were within established limits.

Corrective Action: None required.

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross
Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Client:

Project:

Lab Set ID: 1308555

3rd Quarter Chloroform 2013

Dept: WC

QC Type: LCS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	LCS-R58689 300.0-W	Date Analyzed:	09/03/2013	1559h										
Chloride		4.73	mg/L	E300.0	0.0114	0.100	5.000	0	94.6	90 - 110				
Lab Sample ID: Test Code:	LCS-R58608 NO2/NO3-W-353.2	Date Analyzed:	08/30/2013	1609h										
Nitrate/Nitrite (as	s N)	1.06	mg/L	E353.2	0.00252	0.100	1.000	0	106	90 - 110				

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1308555

Project:

Client:

3rd Quarter Chloroform 2013

Garrin Palmer Contact:

WC Dept:

QC Type: MBLK

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	MB-R58689 300.0-W	Date Analyzed:	09/03/2013	1535h										
Chloride		< 0.100	mg/L	E300.0	0.0114	0.100								
Lab Sample ID: Test Code:	MB-R58608 NO2/NO3-W-353.2	Date Analyzed:	08/30/2013	1607h										
Nitrate/Nitrite (as	N)	< 0.100	mg/L	E353.2	0.00252	0.100								

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1308555

Client:

Project: 3rd Quarter Chloroform 2013

Contact: Garrin Palmer

Dept: WC

QC Type: MS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1308555-001AMS 300.0-W	Date Analyzed:	09/03/2013	1645h										
Chloride	=======================================	5.24	mg/L	E300.0	0.0114	0.100	5.000	0.022	104	90 - 110				
Lab Sample ID: Test Code:	1308555-009AMS 300.0-W	Date Analyzed:	09/03/2013	09/03/2013 2148h										
Chloride		250	mg/L	E300.0	0.570	5.00	250.0	24	90.6	90 - 110				
Lab Sample ID: Test Code:	1308555-004BMS NO2/NO3-W-353.2	Date Analyzed:	08/30/2013	1646h										
Nitrate/Nitrite (as N)		17.5	mg/L	E353.2	0.0252	1.00	10.00	4.51	130	90 - 110				76

^{1 -} Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

American West

Client:

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1308555

Project: 3rd Quarter Chloroform 2013

Contact: Garrin Palmer

Dept: WC

QC Type: MSD

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1308555-001AMSD 300.0-W	Date Analyzed:	09/03/2013	1708h										
Chloride		5.25	mg/L	E300.0	0.0114	0.100	5.000	0.022	105	90 - 110	5.24	0.191	20	
Lab Sample ID: Test Code:	1308555-009AMSD 300.0-W	Date Analyzed:	09/03/2013 2211h											
Chloride		268	mg/L	E300.0	0.570	5.00	250.0	24	97.7	90 - 110	250	6.86	20	
Lab Sample ID: Test Code:	1308555-004BMSD NO2/NO3-W-353.2	Date Analyzed:	08/30/2013 1647h											
Nitrate/Nitrite (as N)		16.4	mg/L	E353.2	0.0252	1.00	10.00	4.51	119	90 - 110	17.5	6.57	10	11

^{&#}x27;- Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

463 West 3600 South

American West

Client:

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1308555

Project: 3rd Quarter Chloroform 2013

Contact: Garrin Palmer

Dept: MSVOA

QC Type: LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: LCS VOC 083013A Test Code: 8260-W	Date Analyzed:	08/30/2013	0922h										
Chloroform	19.0	μg/L	SW8260C	0.277	2.00	20.00	0	95.0	67 - 132				
Methylene chloride	16.3	μg/L	SW8260C	0.155	2.00	20.00	0	81.4	32 - 185				
Surr: 1,2-Dichloroethane-d4	52.8	μg/L	SW8260C			50.00		106	76 - 138				
Surr: 4-Bromofluorobenzene	48.7	μg/L	SW8260C			50.00		97.3	77 - 121				
Surr: Dibromofluoromethane	51.3	μg/L	SW8260C			50.00		103	67 - 128				
Surr: Toluene-d8	50.5	μg/L	SW8260C			50.00		101	81 - 135				

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1308555

Project:

Client:

3rd Ouarter Chloroform 2013

Garrin Palmer Contact:

MSVOA Dept:

QC	Type:	MBLK	

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC 083013A Test Code: 8260-W	Date Analyzed:	08/30/2013	1001h		27								
Carbon tetrachloride	< 1.00	μg/L	SW8260C	0.137	1.00								
Chloroform	< 1.00	μg/L	SW8260C	0.277	1.00								
Chloromethane	< 1.00	μg/L	SW8260C	0.127	1.00								
Methylene chloride	< 1.00	μg/L	SW8260C	0.155	1.00								
Surr: 1,2-Dichloroethane-d4	55.5	μg/L	SW8260C			50.00		111	76 - 138				
Surr: 4-Bromofluorobenzene	49.9	μg/L	SW8260C			50.00		99.8	77 - 121				
Surr: Dibromofluoromethane	51.0	μg/L	SW8260C			50.00		102	67 - 128				
Surr: Toluene-d8	51.0	μg/L	SW8260C			50.00		102	81 - 135				

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1308555

Client:

Project: 3rd Quarter Chloroform 2013

Contact: Garrin Palmer

Dept: MSVOA

QC Type: MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1308555-001CMS Test Code: 8260-W	Date Analyzed:	08/30/2013	1723h										
Chloroform	22.5	μg/L	SW8260C	0.277	2.00	20.00	0	113	50 - 146				
Methylene chloride	18.6	μg/L	SW8260C	0.155	2.00	20.00	0	92.9	30 - 192				
Surr: 1,2-Dichloroethane-d4	56.6	μg/L	SW8260C			50.00		113	72 - 151				
Surr: 4-Bromofluorobenzene	47.2	μg/L	SW8260C			50.00		94.4	80 - 128				
Surr: Dibromofluoromethane	52.6	μg/L	SW8260C			50.00		105	80 - 124				
Surr: Toluene-d8	47.6	μg/L	SW8260C			50.00		95.2	77 - 129				

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1308555

3rd Quarter Chloroform 2013 Project:

Garrin Palmer Contact:

MSVOA Dept:

QC Type: MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1308555-001CMSD Test Code: 8260-W	Date Analyzed:	08/30/2013	1742h										
Chloroform	21.2	μg/L	SW8260C	0.277	2.00	20.00	0	106	50 - 146	22.5	5.94	25	
Methylene chloride	17.7	μg/L	SW8260C	0.155	2.00	20.00	0	88.6	30 - 192	18.6	4.74	25	
Surr: 1,2-Dichloroethane-d4	56.8	μg/L	SW8260C			50.00		114	72 - 151				
Surr: 4-Bromofluorobenzene	48.8	μg/L	SW8260C			50.00		97.5	80 - 128				
Surr: Dibromofluoromethane	53.3	μg/L	SW8260C			50.00		107	80 - 124				
Surr: Toluene-d8	48.2	μg/L	SW8260C			50.00		96.4	77 - 129				

WORK ORDER Summary

Work Order: 1308555

Page 1 of 2

Client:

Energy Fuels Resources, Inc.

Due Date: 9/11/2013

Client ID:

DEN100

Contact:

Garrin Palmer

Project:

3rd Quarter Chloroform 2013

Ш OC Level:

PA Rush. OC 3 (Summary/No chromatograms). RL of 1 ppm for Chloride and VOC and 0.1 ppm for NO2/NO3. Expected levels provided by client - see Comments: Jenn. J-flag what we can't meet. EIM Locus and EDD-Denison. Email Group.;

WO Type: Project

Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	50
1308555-001A	TW4-O3R_08282013	8/28/2013 0933h	8/30/2013 0945h	300.0-W	Aqueous	~	df-wc	1
				1 SEL Analytes; CL				
1308555-001B				NO2/NO3-W-353.2		V	df - no2/no3	
				1 SEL Analytes: NO3NO2	V			
1308555-001C				8260-W		~	VOCFridge	3
				Test Group: 8260-W-Custo	om; # of Analytes: 4 / # of Surr: 4			
1308555-002A	TW4-12_08292013	8/29/2013 0715h	8/30/2013 0945h	300.0-W	Aqueous	V	df - wc	1
	8			1 SEL Analytes: CL				
1308555-002B				NO2/NO3-W-353.2		1	df - no2/no3	
				1 SEL Analytes: NO3NO2	V			
1308555-002C				8260-W		~	VOCFridge	3
				Test Group: 8260-W-Custo	om; # of Analytes: 4 / # of Surr: 4			
1308555-003A	TW4-13_08292013	8/29/2013 0721h	8/30/2013 0945h	300.0-W	Aqueous	V	df-wc	-1
				1 SEL Analytes; CL				2
1308555-003B				NO2/NO3-W-353.2		~	df - no2/no3	
				1 SEL Analytes: NO3NO2.	V			
1308555-003C				8260-W		V	VOCFridge	3
				Test Group: 8260-W-Custo	om; # of Analytes: 4 / # of Surr: 4			
1308555-004A	TW4-14_08292013	8/29/2013 0729h	8/30/2013 0945h	300.0-W	Aqueous	~	df - wc	1
				1 SEL Analytes: CL				
1308555-004B				NO2/NO3-W-353.2		V	df - no2/no3	
				1 SEL Analytes: NO3NO2	V			
1308555-004C				8260-W		~	VOCFridge	3
				Test Group: 8260-W-Cust	om; # of Analytes: 4 / # of Surr: 4			
1308555-005A	TW4-27_08292013	8/29/2013 0735h	8/30/2013 0945h	300.0-W	Aqueous	V	df-wc	1
				I SEL Analytes: CL				
1308555-005B				NO2/NO3-W-353.2		~	df - no2/no3	
				1 SEL Analytes: NO3NO2	N			
1308555-005C				8260-W		V	VOCFridge	3
,				Test Group: 8260-W-Cust	om; # of Analytes: 4 / # of Surr: 4			
1308555-006A	TW4-28_08292013	8/29/2013 0743h	8/30/2013 0945h	300.0-W	Aqueous	~	df-wc	1
	-			1 SEL Analytes: CL				

WORK O	RDER Summary				Work Orde	: 13	08555	Page 2 of 2
Client:	Energy Fuels Resources, Inc.				Due Date	: 9/1	1/2013	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
1308555-006B	TW4-28_08292013	8/29/2013 0743h	8/30/2013 0945h	NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	Aqueous	V	df - no2/no3	ļ
1308555-006C				8260-W		V	VOCFridge	3
				Test Group: 8260-W-Custo	m; # of Analytes: 4 / # of Surr:			
1308555-007A	TW4-30_08292013	8/29/2013 0751h	8/30/2013 0945h	300.0-W	Aqueous	V	df - wc	1
				1 SEL Analytes: CL				
1308555-007B				NO2/NO3-W-353.2		V	df - no2/no3	
				1 SEL Analytes: NO3NO2N	<i>T</i>			
1308555-007C	. =====================================			8260-W		V	VOCFridge	3
				Test Group: 8260-W-Custo	m; # of Analytes: 4 / # of Surr:	4		
1308555-008A	TW4-65_08292013	8/29/2013 0700h	8/30/2013 0945h	300.0-W	Aqueous	V	df - wc	1
				1 SEL Analytes: CL				
1308555-008B				NO2/NO3-W-353.2		~	df - no2/no3	
				I SEL Analytes: NO3NO2N	<u> </u>			
1308555-008C				8260-W		~	VOCFridge	3
				Test Group: 8260-W-Custo	m; # of Analytes: 4 / # of Surr:	4		
1308555-009A	TW4-03_08292013	8/29/2013 0700h	8/30/2013 0945h	300.0-W	Aqueous	V	df - wc	1
				I SEL Analytes: CL				
1308555-009B				NO2/NO3-W-353.2		V	df - no2/no3	
				1 SEL Analytes: NO3NO2N	<i>I</i>			
1308555-009C				8260-W		V	VOCFridge	.3
				Test Group: 8260-W-Custo	m; # of Analytes: 4 / # of Surr:	4		
1308555-010A	Trip Blank	8/28/2013	8/30/2013 0945h	8260-W	Aqueous	V	VOCFridge	3
				Test Group: 8260-W-Custo	m; # of Analytes: 4 / # of Surr:	4		

Amercian West Analytical Laboratories 463 W. 3600 S. Salt Lake City, UT 84115

CHAIN

N OF CUSTODY	130855

4	Phone # (801) 263-8686 Toll Free:			analy												nd/or attached documentation,	Page 1 of 1	
	Fax# (801) 263-8687 Email aw	al@awal-labs.com		Г		QC	Leve	el:		7		Turi	n Arou	nd Ti	ne:		Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on	Due Date:
	www.awal-labs.co	m		L			3						Stand	lard			the day they are due.	
Client:	Energy Fuels Resources, Inc.			Г	Г				Т								X Include EDD:	Laboratory Use Only
Address:	6425 S. Hwy. 191				ı				1								LOCUS UPLOAD EXCEL	Samples Were: Fall X
	Blanding, UT 84511				П				1								Fleid Filtered For:	1 Shipped of hand delivered
Contact:	Garrin Palmer				ı				ı									2 Ambient of Chilled
Phone #:	(435) 678-2221 Cell #:				ı				1								For Compliance With: NELAP	3 Terraparatura 0.8 °C
Email:	gpalmer@energyfuels.com; KWeinel@energyfue dturk@energyfuels.com								1								□ RCRA □ CWA	4 Received Broken/Leaking
Project Name:	Onder The soul of the	earter ch	loro form	1					١								☐ SDWA ☐ ELAP/A2LA ☐ NLLAP	(Improperty Saales)
Project #:						(353.2)	0.00		1								☐ Non-Compliance ☐ Other:	5 Properly Preserved
PO #:				ers	×		or 300.0)	(8260C)			1	ľ				1		Crisicked at bench
Sampler Name:	Garrin Palmer			ontair	9 Matrix	NOS	500	9									Known Hazards	6 Received Within
	Sample ID:	Date Sampled	Time Sampled	# of Co	Sample	NO2/NO3	C1 (4500	VOCs									& Sample Comments	Holding Times N
rw4-03R_082820	013	8/28/2013	933	5	w	х	х	х	2									
rw4-12_0829201	3	8/29/2013	715	5	w	х	х	x	2		┶							COC Tape Was:
rw4-13_0829201	3	8/29/2013	721	5	w	х	x	: x	2					_				1 Present on Outer Package N NA
ГW4-14_0829201	3	8/29/2013	729	5	w	х	х	x	ζ .									2 Umbroken on Outer Package N NA
TW4-27_0829201	.3	8/29/2013	735	5	w	х	x	x	2									
rw4-28_0829201	3	8/29/2013	743	5	w	х	х	: x	2									3 Present on Sample Y N NA
rw4-30_0829201	3	8/29/2013	751	5	w	х	x	х	2									4 Unbroken on Sample
rw4-65_0829201	3	8/29/2013	700	5	w	х	x	: x	2									Y N (NA)
TW4-03_0829201	3	8/29/2013	700	5	w	х	х	х	2									Discrepancies Between Sample
Trip Blan	~K	8/28/13		3	w			×	4									Labels and COC Record?
Temp B	lank				L	_	L		4									
				L	L		L	_	1		_							
				L	L		L		1									
Relinquished by: /90	ue Tolo	Sate 8 24 13	Received by: Signature				/	~				Date:					Special Instructions:	
Print Name: 62	Name: Garrin Palmer 1200 Print Name:				/							Time:						
Reilinquished by: Bignature	lure Signature											Date:					See the Analytical Scope of Wo analyte list.	ork for Reporting Limits and VOC
Print Name:									,		,	Time:						
Reiinquished by: Signature	ature Signature				N	_	, C	Da	_		1	Date:		45	5			
Print Name:		Γime:		-1	ma		4	1 ws	1_	1		Time	8/3	1/1	3 4			
Refinquished by: Date: Received by: Signature Signature							/	1				Date:						
	Time:							Time:										

AWAL - Analytical Scope of Work White Mesa Mill Blanding Utah Page 11 of 13

Contaminant	Analytical	Reporting	Maximum	Sample	Sample
	Methods	Limit	Holding	Preservation	Temperature
750 - All - All -	to be Used		Times	Requirements	Requirements
General Inorganics	and the	The same	130 Ext 1	Maria Son Great Train	THE PERSON NAMED IN
Chloride	A4500-C1	1 mg/L	28 days	None	≤6°C
	B or				
1	A4500-CI				
	E				
	or E300.0	\rightarrow			
Sulfate	A4500-	1 mg/L	28 days	None	≤6°C
	SO4 E or	Į.			
	E300.0				
Carbonate as CO3	A2320 B	1 mg/L	14 days	None	₹6°C
Dicarbonate as HCO3	A2320 B	1 mg/L	14 days	None	
Volatile Organic Compound				- JEC 1	27- 27
Carbon Tetrachloride	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
	or				
	SW8260C				
Chloroform	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
	or				
	SW8260C				10.5
Dichloromethane	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
(Methylene Chloride)	or		l .		
	SW8260C				
Chloromethane	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
A.	or			l.	
SUCC. THERE I THE SUCH A	SW8260C	Onles	WIND SECTION	2 25219 7444	
SVOCs — Tailings Impound 1,2,4-Trichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤5°C
1,2-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	<6°C
1,3-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1,4-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1-Methylnaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4,5-Trichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4,6-Trichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4-Dichlorophenol	SW8270D	<10 ug/L <10 ug/L	7/40 days	None	≤6°C
2,4-Dimethylphenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4-Dinitrophenol	SW8270D	<20 ug/L	7/40 days	None	≤6°C
2,4-Dinitrotoluene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,6-Dinitrotoluene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Chloronaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Chlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Methylnaphthalene	SW8270D	<10 ug/L	7/40 days	None	<u>≤6°C</u>
2-Methylphenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Nitrophenol	SW8270D	<10 ug/L	7/40 days	None	<u>≤6°C</u> ≤6°C
3&4-Methylphenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
3,3'-Dichlorobenzidine	SW8270D	<10 ug/L	7/40 days	None	≤6°€.
1 2,2 LECITOROUGHERING	D 11 02 / UL	-IU ug/L	11 TO days	TAOHO	

Preservation Check Sheet

Sample Set Extension and pH

	_	_	_	_	_	The state of	_	T T	Tu pii		The second	_	_			_		
Preservative	1	2	3	4	5	6	7	8	9									
pH <2 H ₂ SO ₄									1									
$pH < 2 H_2SO_4$																		
pH >12 NaOH						14												
pH <2 HNO ₃											H							
pH <2 H ₂ SO ₄	Yes	Ves	Ves	Ver	Ves	Yes	Ves	1/9	Ves									
pH <2 HCL	/	1	/	/	7	1	7	/	/									
pH <2 H ₂ SO ₄																		
pH > 9NaOH,																		
pH <2 H ₂ SO ₄					-			-							-			
	-			-	-	_		-			1	-			-			
											+		+					
	-	-			-							1						i
	-		-	-									-	1				
	$\begin{array}{l} pH < 2 \; H_2SO_4 \\ pH > 12 \\ NaOH \\ pH < 2 \; HNO_3 \\ pH < 2 \; H_2SO_4 \\ pH < 2 \; HCL \\ pH < 2 \; H_2SO_4 \\ pH > 9NaOH, \\ Zn \; Acetate \\ pH < 2 \; H_2SO_4 \\ \end{array}$	pH <2 H ₂ SO ₄ pH <2 H ₂ SO ₄ pH >12 NaOH pH <2 HNO ₃ pH <2 HNO ₃ pH <2 H ₂ SO ₄ pH <2 HCL pH <2 HCL pH <2 H ₂ SO ₄ pH > 9NaOH, Zn Acetate pH <2 H ₂ SO ₄	pH <2 H ₂ SO ₄ pH >12 NaOH pH <2 HNO ₃ pH <2 HNO ₃ pH <2 HCL pH <2 HCL pH <2 HCL pH <2 H ₂ SO ₄ pH >9NaOH, Zn Acetate pH <2 H ₂ SO ₄	pH <2 H ₂ SO ₄ pH <2 H ₂ SO ₄ pH >12 NaOH pH <2 HNO ₃ pH <2 H ₂ SO ₄ pH <2 HCL pH <2 H ₂ SO ₄ pH > 9NaOH, Zn Acetate pH <2 H ₂ SO ₄	pH <2 H ₂ SO ₄ pH >12 NaOH pH <2 HNO ₃ pH <2 H ₂ SO ₄ pH <2 HNO ₃ pH <2 H ₂ SO ₄ pH <2 HCL pH <2 H ₂ SO ₄ pH >9NaOH, Zn Acetate pH <2 H ₂ SO ₄	Preservative / 2 3 4/ 5 pH <2 H ₂ SO ₄ pH >2 H ₂ SO ₄ pH >12 NaOH pH <2 HNO ₃ pH <2 H ₂ SO ₄ pH <2 H ₂ SO ₄ pH <2 H ₂ SO ₄ pH <2 HCL pH <2 H ₂ SO ₄ pH > 9NaOH, Zn Acetate pH <2 H ₂ SO ₄	Preservative / 2 3 4/ 5 (c pH <2 H ₂ SO ₄ pH >2 H ₂ SO ₄ pH >12 NaOH pH <2 HNO ₃ pH <2 H ₂ SO ₄ pH <2 H ₂ SO ₄ pH <2 H ₂ SO ₄ pH <2 HCL pH <2 H ₂ SO ₄ pH >9 NaOH, Zn Acetate pH <2 H ₂ SO ₄	Preservative / 2 3 4/ 5 6 7 pH <2 H ₂ SO ₄ pH <2 H ₂ SO ₄ pH >12 NaOH pH <2 HNO ₃ pH <2 H ₂ SO ₄ pH > 9NaOH, Zn Acetate pH <2 H ₂ SO ₄	Preservative / 2 3 4/ 5 6 7 8 pH <2 H ₂ SO ₄ pH >2 H ₂ SO ₄ pH >12 NaOH pH <2 H ₂ SO ₄ pH >9 NaOH, Zn Acetate pH <2 H ₂ SO ₄	pH <2 H ₂ SO ₄ pH <2 H ₂ SO ₄ pH >12 NaOH pH <2 HNO ₃ pH <2 H ₂ SO ₄ y/c5 pH <2 HCL pH <2 H ₂ SO ₄ pH >9NaOH, Zn Acetate pH <2 H ₂ SO ₄	Preservative / 2 3 4/ 5 6 7 8 9 pH <2 H ₂ SO ₄ pH >2 H ₂ SO ₄ pH >12 NaOH pH <2 H ₂ SO ₄ pH >9 NaOH, Zn Acetate pH <2 H ₂ SO ₄	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Preservative / 2 3 4/ 5 6 7 8 9 pH <2 H ₂ SO ₄ pH >2 H ₂ SO ₄ pH >12 NaOH pH <2 H ₂ SO ₄	Preservative / 2 3 4 5 6 7 8 9 pH <2 H ₂ SO ₄ pH <2 H ₂ SO ₄ pH >12 NaOH pH <2 HNO ₃ pH <2 H ₂ SO ₄ pH <2 H ₂ SO ₄ pH <2 H ₂ SO ₄ pH <2 HCL pH <2 H ₂ SO ₄	Preservative / 2 3 4/ 5 6 7 8 9 pH <2 H ₂ SO ₄ pH >12 NaOH pH <2 HNO ₃ pH <2 H ₂ SO ₄ y/c5 y/es y/es y/es y/es y/es y/es y/es y/es	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Procedure:

- 1) Pour a small amount of sample in the sample lid
- 2) Pour sample from Lid gently over wide range pH paper
- 3) Do Not dip the pH paper in the sample bottle or lid
- 4) If sample is not preserved, properly list its extension and receiving pH in the appropriate column above
- 5) Flag COC, notify client if requested
- 6) Place client conversation on COC
- 7) Samples may be adjusted

Frequency:

All samples requiring preservation

- * The sample required additional preservative upon receipt.
- + The sample was received unpreserved
- ▲ The Sample was received unpreserved and therefore preserved upon receipt.
- # The sample pH was unadjustable to a pH < 2 due to the sample matrix
- The sample pH was unadjustable to a pH > ____ due to the sample matrix interference

Tab I

Quality Assurance and Data Validation Tables

I-1: Field QA/QC Evaluation

Location	1x Casing Volume	Volume Pumped	2x Casing Volume	Volume Check			RPD	р	Н	RPD	Te	mp	RPD	Redox F	otential	RPD	Turb	idity	RPD
MW-4	NA	Continuously pumped well			19	16	N/A	7.	15	N/A	15	.63	N/A		59	N/A	2.		N/A
TW4-01	29.80	66.00	60	OK	2131	2124	0.33	6.25	6.22	0.48	14.94	14.94	0.00	308	308	0.00	77	75	2.63
TW4-02	35.52	63.00	71	Pumped Dry	3070	3110	1.29	6.73	6.72	0.15	14.46	14.49	0.21	N		NC	N		NC
TW4-03	58.31	91.00	117	Pumped Dry	1630	1635	0.31	7.00	6.97	0.43	15.98	15.95	0.19	N	M	NC	N	M	NC
		Continuously																	
TW4-04	NA	pumped well				03	N/A		96	N/A	16		N/A	-	58	N/A	3.		N/A
TW4-05	39.55	110.00	79	OK	1486 1490		0.27	6.58	6.58	0.00	15.54	15.55	0.06	292	291	0.34	675	680	0.74
TW4-06	18.44	25.00	37	Pumped Dry	4000 4006		0.15	6.11	6.14	0.49	15.63	15.67	0.26	N.		NC	N.		NC
TW4-07	35.78	66.00	72	Pumped Dry	1564 1567		0.19	6.83	6.85	0.29	14.41	14.45	0.28	N		NC	N.		NC
TW4-08	39.15	99.00	78	OK	3276	3271	0.15	6.83	6.84	0.15	15.04	15.03	0.07	140	140	0.00	260	265	1.90
TW4-09	40.96	99.00	82	OK	2341	2340	0.04	6.41	6.40	0.16	15.06	15.06	0.00	307	306	0.33	297	304	2.33
TW4-10	34.86	52.00	70	Pumped Dry	2418 2420		0.08	6.00	6.03	0.50	14.95	14.97	0.13	N		NC	N.		NC
TW4-11	27.62	66.00	55	OK	1627	1627	0.00	6.65	6.65	0.00	14.48	14.50	0.14	303	303	0.00	13.8	14.0	0.00
TW4-12	38.80	88.00	78	OK	1189	1189	0.00	7.14	7.14	0.00	15.04	15.04	0.00	260	260	0.00	3.2	3.2	0.00
TW4-13	36.04	55.00	72	Pumped Dry	1735	1739	0.23	7.17	7.17	0.00	15.30	15.36	0.39	N.		NC	N.		NC
TW4-14	4.98	5.50	10	Pumped Dry	1265	1282	1.33	7.15	7.12	0.42	15.45	15.51	0.39	N.	M	NC	N.	M	NC
MW-26	NA	Continuously pumped well			33	51	N/A	6.95		N/A	15.97		N/A	23	36	N/A	1.5	50	N/A
TW4-16	52.73	132.00	105	OK	3494	3495	0.03	6.41	6.41	0.00	14.94	14.95	0.07	181	182	0.55	33	33	0.00
MW-32	38.17	78.12	76	OK	3856	3845	0.29	6.59	6.53	0.91	15.09	15.10	0.07	171	170	0.59	91	94	3.24
TW4-18	50.50	121.00	101	OK	1630	1611	1.17	6.41	6.40	0.16	15.65	15.64	0.06	298	298	0.00	537	521	3.02
TW4-19	NA	Continuously pumped well		45	32	05	N/A	6.	80	N/A	16	.15	N/A	4(00	N/A	0.	0	N/A
TW4-20	NA	Continuously pumped well		(etc.)	39	60	N/A	6.	97	N/A	17.07		N/A	22	25	N/A	4.	0	N/A
TW4-21	39.99	99.00	80	OK	3802	3795	0.18	6.74	6.75	0.15	16.10	16.10	0.00	292	292	0.00	6.6	6.5	0.00
		Continuously									11-3								
TW4-22	NA	pumped well		-	60	97	N/A	6.	94	N/A	17	.10	N/A	25	54	N/A	0.	5	N/A
TW4-23	32.38	88.00	65	OK	3645	3644	0.03	6.15	6.17	0.32	14.36	14.36	0.00	211	213	0.94	69	67	2.94
TW4-24	NA	Continuously pumped well		-जर्म	82	47	N/A	6.	73	N/A	17	.11	N/A	25	54	N/A			N/A
TW4-25	NA	Continuously pumped well		- 1 	28	95	N/A	7.	27	N/A	16	.97	N/A	27	75	N/A	0.8	30	N/A
TW4-26	15.11	18.00	30	Pumped Dry	6307	6297	0.16	4.22	4.25	0.71	16.01	16.00	0.06	N.	M	NC	N.	M	NC
TW4-27	9.59	11.00	19	Pumped Dry	5375	5367	0.15	6.81	6.84	0.44	15.27	15.29	0.13	N.	M	NC	N.	M	NC
TW4-28	45.87	99.00	92	OK	1165	1161	0.34	7.25	7.22	0.41	16.63	16.64	0.06	291	290	0.34	19	18.2	4.30
TW4-29	7.99	11.00	16	Pumped Dry	5295	5285	0.19	6.72	6.69	0.45	15.38	15.37	0.07	N	M	NC	N	M	NC
TW4-29 Resample	14.18	18.00	28	Pumped Dry	4258	4251	0.16	6.26	6.31	0.80	15.32	15.35	0.20	N	M	NC	N	M	NC
TW4-30	9.69	11.00	19	Pumped Dry	4458	4429	0.65	5.55	5.54	0.18	15.47	15.46	0.06	N		NC	N		NC
TW4-31	14.52	18.00	29	Pumped Dry	4795	4803	0.17	6.93	6.92	0.14	15.91	15.98	0.44	N.		NC	N.		NC
				V4-25 are continually			-										-		

MW-4, TW4-4, MW-26, TW4-19, TW4-20, TW4-22, TW4-24, and TW4-25 are continually pumped wells. TW4-22, TW4-24, and TW4-25 are pumped under the nitrate program.

TW4-02, TW4-03, TW4-06, TW4-07, TW4-10, TW4-13, TW4-14, TW4-26, TW4-27, TW4-29, TW4-30, and TW4-31 were pumped dry and sampled after recovery.

NM = Not Measured. The QAP does not require the measurement of redox potential or turbidity in wells that were purged to dryness.

RPD = Relative Percent Difference

The QAP states that turbidity should be less than 5 Nephelometric Turbidity Units ("NTU") prior to sampling unless the well is characterized by water that has a higher turbidity. The QAP does not require that turbidity measurements be less than 5 NTU prior to sampling. As such, the noted observations regarding turbidity measurements less than 5 NTU are included for information purposes only.

Location ID	Parameter Name	Sample Date	Analysis Date	Hold Time (Days)	Allowed Hold Time (Days)	Hold Time Check
Trip Blank	Carbon tetrachloride	8/28/2013	8/30/2013	(Days)	14	OK
Trip Blank Trip Blank	Chloroform	8/28/2013	8/30/2013	2	14	OK
Trip Blank Trip Blank	Chloromethane	8/28/2013	8/30/2013	2	14	OK
Trip Blank	Methylene chloride	8/28/2013	8/30/2013	2	14	OK
Trip Blank Trip Blank	Carbon tetrachloride	9/3/2013	9/9/2013	6	14	OK
Trip Blank Trip Blank	Chloroform	9/3/2013	9/9/2013	6	14	OK
Trip Blank Trip Blank	Chloromethane	9/3/2013	9/9/2013	6	14	OK
Trip Blank Trip Blank	Methylene chloride	9/3/2013	9/9/2013	6	14	OK
Trip Blank Trip Blank	Carbon tetrachloride	9/12/2013	9/16/2013	4	14	OK
Trip Blank Trip Blank	Chloroform	9/12/2013	9/16/2013	4	14	OK
Trip Blank	Chloromethane	9/12/2013	9/16/2013	4	14	OK
Trip Blank	Methylene chloride	9/12/2013	9/16/2013	4	14	OK
Trip Blank	Carbon tetrachloride	9/26/2013	9/27/2013	1	14	OK
Trip Blank	Chloroform	9/26/2013	9/27/2013	i	14	OK
Trip Blank	Chloromethane	9/26/2013	9/27/2013	1	14	OK
Trip Blank	Methylene chloride	9/26/2013	9/27/2013	1	14	OK
MW-04	Carbon tetrachloride	9/3/2013	9/9/2013	6	14	OK
MW-04	Chloride	9/3/2013	9/12/2013	9	28	OK
MW-04	Chloroform	9/3/2013	9/9/2013	6	14	OK
MW-04	Chloromethane	9/3/2013	9/9/2013	6	14	OK
MW-04	Methylene chloride	9/3/2013	9/9/2013	6	14	OK
MW-04	Nitrate/Nitrite (as N)	9/3/2013	9/12/2013	9	28	OK
TW4-01	Carbon tetrachloride	9/12/2013	9/16/2013	4	14	OK
TW4-01	Chloride	9/12/2013	9/19/2013	7	28	OK
TW4-01	Chloroform	9/12/2013	9/17/2013	5	14	OK
TW4-01	Chloromethane	9/12/2013	9/16/2013	4	14	OK
TW4-01	Methylene chloride	9/12/2013	9/16/2013	4	14	OK
TW4-01	Nitrate/Nitrite (as N)	9/12/2013	9/17/2013	5	28	OK
TW4-02	Carbon tetrachloride	9/12/2013	9/16/2013	4	14	OK
TW4-02	Chloride	9/12/2013	9/18/2013	6	28	OK
TW4-02	Chloroform	9/12/2013	9/17/2013	5	14	OK
TW4-02	Chloromethane	9/12/2013	9/16/2013	4	14	OK
TW4-02	Methylene chloride	9/12/2013	9/16/2013	4	14	OK
TW4-02	Nitrate/Nitrite (as N)	9/12/2013	9/17/2013	5	28	OK
TW4-03	Carbon tetrachloride	8/29/2013	8/30/2013	1	14	OK
TW4-03	Chloride	8/29/2013	9/3/2013	5	28	OK
TW4-03	Chloroform	8/29/2013	8/30/2013	1	14	OK
TW4-03	Chloromethane	8/29/2013	8/30/2013	11	14	OK
TW4-03	Methylene chloride	8/29/2013	8/30/2013	1	14	OK
TW4-03	Nitrate/Nitrite (as N)	8/29/2013	8/30/2013	1	28	OK
TW4-03R	Carbon tetrachloride	8/28/2013	8/30/2013	2	14	OK
TW4-03R	Chloride	8/28/2013	9/3/2013	6	28	OK
TW4-03R	Chloroform	8/28/2013	8/30/2013	2	14	OK
TW4-03R	Chloromethane	8/28/2013	8/30/2013	2	14	OK
TW4-03R	Methylene chloride	8/28/2013	8/30/2013	2	14	OK
TW4-03R	Nitrate/Nitrite (as N)	8/28/2013	8/30/2013	2	28	OK
TW4-04	Carbon tetrachloride	9/3/2013	9/9/2013	6	14	OK
TW4-04	Chloride	9/3/2013	9/12/2013	9	28	OK
TW4-04	Chloroform	9/3/2013	9/9/2013	6	14	OK
TW4-04	Chloromethane	9/3/2013	9/9/2013	6	14	OK
TW4-04	Methylene chloride	9/3/2013	9/9/2013	6	14	OK
TW4-04	Nitrate/Nitrite (as N)	9/3/2013	9/12/2013	9	28	OK
TW4-05	Carbon tetrachloride	9/5/2013	9/9/2013	4	14	OK
TW4-05	Chloride	9/5/2013	9/13/2013	8	28	OK

Location ID	Parameter Name	Sample Date	Analysis Data	Hold Time (Days)	Allowed Hold Time (Days)	Hold Time
TW4-05	Chloroform	9/5/2013	Analysis Date 9/9/2013	(Days)	14	OK
TW4-05	Chloromethane	9/5/2013	9/9/2013	4	14	OK
TW4-05	Methylene chloride	9/5/2013	9/9/2013	4	14	OK
				7	28	OK
TW4-05	Nitrate/Nitrite (as N)	9/5/2013	9/12/2013	5		
TW4-05R	Carbon tetrachloride	9/4/2013	9/9/2013		14	OK
TW4-05R	Chloride	9/4/2013	9/12/2013	8	28	OK
TW4-05R	Chloroform	9/4/2013	9/9/2013	5	14	OK
TW4-05R	Chloromethane	9/4/2013	9/9/2013	5	14	OK
TW4-05R	Methylene chloride	9/4/2013	9/9/2013	5	14	OK
TW4-05R	Nitrate/Nitrite (as N)	9/4/2013	9/12/2013	8	28	OK
TW4-06	Carbon tetrachloride	9/5/2013	9/9/2013	4	14	OK
TW4-06	Chloride	9/5/2013	9/12/2013	7	28	OK
TW4-06	Chloroform	9/5/2013	9/9/2013	4	14	OK
TW4-06	Chloromethane	9/5/2013	9/9/2013	4	14	OK
TW4-06	Methylene chloride	9/5/2013	9/9/2013	4	14	OK
TW4-06	Nitrate/Nitrite (as N)	9/5/2013	9/12/2013	7	28	OK
TW4-07	Carbon tetrachloride	9/12/2013	9/16/2013	4	14	OK
TW4-07	Chloride	9/12/2013	9/18/2013	6	28	OK
TW4-07	Chloroform	9/12/2013	9/17/2013	5	14	OK
TW4-07	Chloromethane	9/12/2013	9/16/2013	4	14	OK
TW4-07	Methylene chloride	9/12/2013	9/16/2013	4	14	OK
TW4-07	Nitrate/Nitrite (as N)	9/12/2013	9/17/2013	5	28	OK
TW4-08	Carbon tetrachloride	9/5/2013	9/9/2013	4	14	OK
TW4-08	Chloride	9/5/2013	9/12/2013	7	28	OK
TW4-08	Chloroform	9/5/2013	9/9/2013	4	14	OK
TW4-08	Chloromethane	9/5/2013	9/9/2013	4	14	OK
TW4-08	Methylene chloride	9/5/2013	9/9/2013	4	14	OK
TW4-08	Nitrate/Nitrite (as N)	9/5/2013	9/12/2013	7	28	OK
TW4-09	Carbon tetrachloride	9/5/2013	9/9/2013	4	14	OK
TW4-09	Chloride	9/5/2013	9/12/2013	7	28	OK
TW4-09	Chloroform	9/5/2013	9/9/2013	4	14	OK
TW4-09	Chloromethane	9/5/2013	9/9/2013	4	14	OK
TW4-09		9/5/2013	9/9/2013	4	14	OK
	Methylene chloride					
TW4-09	Nitrate/Nitrite (as N)	9/5/2013	9/12/2013	7	28	OK
TW4-10	Carbon tetrachloride	9/12/2013	9/16/2013	4	14	OK
TW4-10	Chloride	9/12/2013	9/18/2013	6	28	OK
TW4-10	Chloroform	9/12/2013	9/17/2013	5	14	OK
TW4-10	Chloromethane	9/12/2013	9/16/2013	4	14	OK
TW4-10	Methylene chloride	9/12/2013	9/16/2013	4	14	OK
TW4-10	Nitrate/Nitrite (as N)	9/12/2013	9/17/2013	5	28	OK
TW4-11	Carbon tetrachloride	9/12/2013	9/16/2013	4	14	OK
TW4-11	Chloride	9/12/2013	9/18/2013	6	28	OK
TW4-11	Chloroform	9/12/2013	9/17/2013	5	14	OK
TW4-11	Chloromethane	9/12/2013	9/16/2013	4	14	OK
TW4-11	Methylene chloride	9/12/2013	9/16/2013	4	14	OK
TW4-11	Nitrate/Nitrite (as N)	9/12/2013	9/17/2013	5	28	OK
TW4-12	Carbon tetrachloride	8/29/2013	8/30/2013	1	14	OK
TW4-12	Chloride	8/29/2013	9/3/2013	5	28	OK
TW4-12	Chloroform	8/29/2013	8/30/2013	1	14	OK
TW4-12	Chloromethane	8/29/2013	8/30/2013	1	14	OK
TW4-12	Methylene chloride	8/29/2013	8/30/2013	1	14	OK
TW4-12	Nitrate/Nitrite (as N)	8/29/2013	8/30/2013	1	28	OK
TW4-13	Carbon tetrachloride	8/29/2013	8/30/2013	1	14	OK
TW4-13	Chloride	8/29/2013	9/3/2013	5	28	OK

				Hold Time	Allowed Hold	Hold Time
Location ID	Parameter Name	Sample Date	Analysis Date	(Days)	Time (Days)	Check
TW4-13	Chloroform	8/29/2013	8/30/2013	1	14	OK
TW4-13	Chloromethane	8/29/2013	8/30/2013	1	14	OK
TW4-13	Methylene chloride	8/29/2013	8/30/2013	1	14	OK
TW4-13	Nitrate/Nitrite (as N)	8/29/2013	8/30/2013	1	28	OK
TW4-14	Carbon tetrachloride	8/29/2013	8/30/2013	_ 1	14	OK
TW4-14	Chloride	8/29/2013	9/3/2013	5	28	OK
TW4-14	Chloroform	8/29/2013	8/30/2013	1	14	OK
TW4-14	Chloromethane	8/29/2013	8/30/2013	1	14	OK
TW4-14	Methylene chloride	8/29/2013	8/30/2013	1	14	OK
TW4-14	Nitrate/Nitrite (as N)	8/29/2013	8/30/2013	11	28	OK
MW-26	Carbon tetrachloride	9/3/2013	9/9/2013	6	14	OK
MW-26	Chloride	9/3/2013	9/12/2013	9	28	OK
MW-26	Chloroform	9/3/2013	9/9/2013	6	14	OK
MW-26	Chloromethane	9/3/2013	9/9/2013	6	14	OK
MW-26	Methylene chloride	9/3/2013	9/9/2013	6	14	OK
MW-26	Nitrate/Nitrite (as N)	9/3/2013	9/12/2013	9	28	OK
TW4-16	Carbon tetrachloride	9/5/2013	9/9/2013	4	14	OK
TW4-16	Chloride	9/5/2013	9/12/2013	7	28	OK
TW4-16	Chloroform	9/5/2013	9/9/2013	4	14	OK
TW4-16	Chloromethane	9/5/2013	9/9/2013	4	14	OK
TW4-16	Methylene chloride	9/5/2013	9/9/2013	4	14	OK
TW4-16	Nitrate/Nitrite (as N)	9/5/2013	9/12/2013	7	28	OK
MW-32	Carbon tetrachloride	9/4/2013	9/9/2013	5	14	OK
MW-32	Chloride	9/4/2013	9/12/2013	8	28	OK
MW-32	Chloroform	9/4/2013	9/9/2013	5	14	OK
MW-32	Chloromethane	9/4/2013	9/9/2013	5	14	OK
MW-32	Methylene chloride	9/4/2013	9/9/2013	5	14	OK
MW-32	Nitrate/Nitrite (as N)	9/4/2013	9/12/2013	8	28	OK
TW4-18	Carbon tetrachloride	9/5/2013	9/9/2013	4	14	OK
TW4-18	Chloride	9/5/2013	9/13/2013	8	28	OK
TW4-18	Chloroform	9/5/2013	9/9/2013	4	14	OK
TW4-18	Chloromethane	9/5/2013	9/9/2013	4	14	OK
TW4-18	Methylene chloride	9/5/2013	9/9/2013	4	14	OK
TW4-18	Nitrate/Nitrite (as N)	9/5/2013	9/12/2013	7	28	OK
TW4-19	Carbon tetrachloride	9/3/2013	9/9/2013	6	14	OK
TW4-19	Chloride	9/3/2013	9/12/2013	9	28	OK
TW4-19	Chloroform	9/3/2013	9/9/2013	6	14	OK
TW4-19	Chloromethane	9/3/2013	9/9/2013	6	14	OK
TW4-19	Methylene chloride	9/3/2013	9/9/2013	6	14	OK
TW4-19	Nitrate/Nitrite (as N)	9/3/2013	9/12/2013	9	28	OK
TW4-20	Carbon tetrachloride	9/3/2013	9/9/2013	6	14	OK
TW4-20	Chloride	9/3/2013	9/12/2013	9	28	OK
TW4-20	Chloroform	9/3/2013	9/10/2013	7	14	OK
TW4-20	Chloromethane	9/3/2013	9/9/2013	6	14	OK
TW4-20	Methylene chloride	9/3/2013	9/9/2013	6	14	OK
TW4-20	Nitrate/Nitrite (as N)	9/3/2013	9/12/2013	9	28	OK
TW4-21	Carbon tetrachloride	9/12/2013	9/16/2013	4	14	OK
TW4-21	Chloride	9/12/2013	9/18/2013	6	28	OK
TW4-21	Chloroform	9/12/2013	9/16/2013	4	14	OK
TW4-21	Chloromethane	9/12/2013	9/16/2013	4	14	OK
TW4-21	Methylene chloride	9/12/2013	9/16/2013	4	14	OK
TW4-21	Nitrate/Nitrite (as N)	9/12/2013	9/17/2013	5	28	OK
TW4-21	Carbon tetrachloride	9/3/2013	9/9/2013	6	14	OK
TW4-22	Carbon tetrachioride Chloride	9/3/2013	9/9/2013	9	28	OK

Location ID	Parameter Name	Sample Date	Analysis Date	Hold Time (Days)	Allowed Hold Time (Days)	Hold Time Check
TW4-22	Chloroform	9/3/2013	9/9/2013	6	14	OK
TW4-22	Chloromethane	9/3/2013	9/9/2013	6	14	OK
TW4-22	Methylene chloride	9/3/2013	9/9/2013	6	14	OK
TW4-22	Nitrate/Nitrite (as N)	9/3/2013	9/12/2013	9	28	OK
TW4-23	Carbon tetrachloride	9/5/2013	9/9/2013	4	14	OK
TW4-23	Chloride	9/5/2013	9/12/2013	7	28	OK
TW4-23	Chloroform	9/5/2013	9/9/2013	4	14	OK
TW4-23	Chloromethane	9/5/2013	9/9/2013	4	14	OK
TW4-23	Methylene chloride	9/5/2013	9/9/2013	4	14	OK
TW4-23	Nitrate/Nitrite (as N)	9/5/2013	9/12/2013	7	28	OK
TW4-24	Carbon tetrachloride	9/3/2013	9/9/2013	6	14	OK
TW4-24	Chloride	9/3/2013	9/12/2013	9	28	OK
TW4-24	Chloroform	9/3/2013	9/9/2013	6	14	OK
TW4-24	Chloromethane	9/3/2013	9/9/2013	6	14	OK
TW4-24	Methylene chloride	9/3/2013	9/9/2013	6	14	OK
TW4-24	Nitrate/Nitrite (as N)	9/3/2013	9/12/2013	9	28	OK
TW4-25	Carbon tetrachloride	9/3/2013	9/9/2013	6	14	OK
TW4-25	Chloride	9/3/2013	9/12/2013	9	28	OK
	Chloroform		9/9/2013	6	14	OK
TW4-25		9/3/2013				
TW4-25	Chloromethane	9/3/2013	9/9/2013	6	14	OK
TW4-25	Methylene chloride	9/3/2013	9/9/2013	6	14	OK
TW4-25	Nitrate/Nitrite (as N)	9/3/2013	9/12/2013	9	28	OK
TW4-26	Carbon tetrachloride	9/5/2013	9/9/2013	4	14	OK
TW4-26	Chloride	9/5/2013	9/12/2013	7	28	OK
TW4-26	Chloroform	9/5/2013	9/9/2013	4	14	OK
TW4-26	Chloromethane	9/5/2013	9/9/2013	4	14	OK
TW4-26	Methylene chloride	9/5/2013	9/9/2013	4	14	OK
TW4-26	Nitrate/Nitrite (as N)	9/5/2013	9/12/2013	7	28	OK
TW4-27	Carbon tetrachloride	8/29/2013	8/30/2013	1	14	OK
TW4-27	Chloride	8/29/2013	9/3/2013	5	28	OK
TW4-27	Chloroform	8/29/2013	8/30/2013	1	14	OK
TW4-27	Chloromethane	8/29/2013	8/30/2013	11	14	OK
TW4-27	Methylene chloride	8/29/2013	8/30/2013	1	14	OK
TW4-27	Nitrate/Nitrite (as N)	8/29/2013	8/30/2013	1	28	OK
TW4-28	Carbon tetrachloride	8/29/2013	8/30/2013	1	14	OK
TW4-28	Chloride	8/29/2013	9/3/2013	5	28	OK
TW4-28	Chloroform	8/29/2013	8/30/2013	1	14	OK
TW4-28	Chloromethane	8/29/2013	8/30/2013	1	14	OK
TW4-28	Methylene chloride	8/29/2013	8/30/2013	1	14	OK
TW4-28	Nitrate/Nitrite (as N)	8/29/2013	8/30/2013	1	28	OK
TW4-29	Carbon tetrachloride	9/12/2013	9/16/2013	4	14	OK
TW4-29	Chloride	9/12/2013	9/18/2013	6	28	OK
TW4-29	Chloroform	9/12/2013	9/16/2013	4	14	OK
	Chloromethane					
TW4-29		9/12/2013	9/16/2013	4	14	OK
TW4-29	Methylene chloride	9/12/2013	9/16/2013	4	14	OK
TW4-29	Nitrate/Nitrite (as N)	9/12/2013	9/17/2013	5	28	OK
TW4-29	Carbon tetrachloride	9/26/2013	9/27/2013	1	14	OK
TW4-29	Chloride	9/26/2013	9/27/2013	1	28	OK
TW4-29	Chloroform	9/26/2013	9/27/2013	1	14	OK
TW4-29	Chloromethane	9/26/2013	9/27/2013	1	14	OK
TW4-29	Methylene chloride	9/26/2013	9/27/2013	1	14	OK
TW4-29	Nitrate/Nitrite (as N)	9/26/2013	9/27/2013	1	28	OK
TW4-30	Carbon tetrachloride	8/29/2013	8/30/2013	1	14	OK
TW4-30	Chloride	8/29/2013	9/3/2013	5	28	OK

Location ID	Parameter Name	Sample Date	Analysis Date	Hold Time (Days)	Allowed Hold Time (Days)	Hold Time Check
TW4-30	Chloroform	8/29/2013	8/30/2013		14	OK
TW4-30	Chloromethane	8/29/2013	8/30/2013	1	14	OK
TW4-30	Methylene chloride	8/29/2013	8/30/2013	1	14	OK
TW4-30	Nitrate/Nitrite (as N)	8/29/2013	8/30/2013	1	28	OK
TW4-31	Carbon tetrachloride	9/5/2013	9/9/2013	4	14	OK
TW4-31	Chloride	9/5/2013	9/12/2013	7	28	OK
TW4-31	Chloroform	9/5/2013	9/9/2013	4	14	OK
TW4-31	Chloromethane	9/5/2013	9/9/2013	4	14	OK
TW4-31	Methylene chloride	9/5/2013	9/9/2013	4	14	OK
TW4-31	Nitrate/Nitrite (as N)	9/5/2013	9/12/2013	7	28	OK
TW4-60	Carbon tetrachloride	9/12/2013	9/17/2013	5	14	OK
TW4-60	Chloride	9/12/2013	9/18/2013	6	28	OK
TW4-60	Chloroform	9/12/2013	9/17/2013	5	14	OK
TW4-60	Chloromethane	9/12/2013	9/17/2013	5	14	OK
TW4-60	Methylene chloride	9/12/2013	9/17/2013	5	14	OK
TW4-60	Nitrate/Nitrite (as N)	9/12/2013	9/17/2013	5	28	OK
TW4-65	Carbon tetrachloride	8/29/2013	8/30/2013	1	14	OK
TW4-65	Chloride	8/29/2013	9/3/2013	5	28	OK
TW4-65	Chloroform	8/29/2013	8/30/2013	1	14	OK
TW4-65	Chloromethane	8/29/2013	8/30/2013	1	14	OK
TW4-65	Methylene chloride	8/29/2013	8/30/2013	1	14	OK
TW4-65	Nitrate/Nitrite (as N)	8/29/2013	8/30/2013	1	28	OK
TW4-70	Carbon tetrachloride	9/5/2013	9/9/2013	4	14	OK
TW4-70	Chloride	9/5/2013	9/12/2013	7	28	OK
TW4-70	Chloroform	9/5/2013	9/9/2013	4	14	OK
TW4-70	Chloromethane	9/5/2013	9/9/2013	4	14	OK
TW4-70	Methylene chloride	9/5/2013	9/9/2013	4	14	OK
TW4-70	Nitrate/Nitrite (as N)	9/5/2013	9/12/2013	7	28	OK

Table I-3 Recipt Temperature Check

Sample Batch	Wells in Batch	Temperature
1308555	TW4-03, TW4-03R, TW4-12, TW4-13, TW4-14, TW4-27,	0.8 °C
	TW4-28, TW4-30, TW4-65, Trip Blank	
1309103	MW-04, TW4-04, TW4-05, TW4-05R, TW4-06, TW4-08,	3.9 °C
	TW4-09, TW4-16, TW4-18, TW4-19, MW-26, MW-32,	
	TW4-20, TW4-22, TW4-23, TW4-24, TW4-25, TW4-26,	
	TW4-31, TW4-70, Trip Blank	
1309255	TW4-01, TW4-02, TW4-07, TW4-10, TW4-11, TW4-21,	2.6 °C
	TW4-29, TW4-60, Trip Blank	
1309328	TW4-01 (Chloride)	4.5 °C
1309526	TW4-29 resample, Trip Blank	0.9 °C

I-4 Analytical Method Check

Parameter	Method	Method Used by Lab
	SW8260B or	
Carbon Tetrachloride	SW8260C	SW8260C
	A4500-Cl B or	
	A4500-Cl E or	
Chloride	E300.0	E300.0
	SW8260B or	
Chloroform	SW8260C	SW8260C
	SW8260B or	
Chloromethane	SW8260C	SW8260C
	SW8260B or	
Methylene chloride	SW8260C	SW8260C
Nitrogen	E353.1 or E353.2	E353.2

All parameters were analyzed using the reporting method specificied in the QAP

	1-5 Reporting			r -			
		Lab			Required	1 - 1	
		Reporting			Reporting		DILUTION
Location	Analyte	Limit	Units	Qualifier	Limit	RL Check	FACTOR
Trip Blank	Carbon tetrachloride	1	ug/L	U	1	OK	1
Trip Blank	Chloroform	1	ug/L	U	11	OK	1
Trip Blank	Chloromethane	1	ug/L	U	1	OK	1
Trip Blank	Methylene chloride	1	ug/L	U	1	OK	1
Trip Blank	Carbon tetrachloride	1	ug/L	U	1	OK	1
Trip Blank	Chloroform	1	ug/L	U	1	OK	1
Trip Blank	Chloromethane	1	ug/L	U	11	OK	11
Trip Blank	Methylene chloride	1	ug/L	U	1	OK	1
Trip Blank	Carbon tetrachloride	1	ug/L	U	1	OK	1
Trip Blank	Chloroform	1	ug/L	U	1	OK	1
Trip Blank	Chloromethane	1	ug/L	U	1	OK	1
Trip Blank	Methylene chloride	11	ug/L	U	1	OK	1
Trip Blank	Carbon tetrachloride	1	ug/L	U	11	OK	1
Trip Blank	Chloroform	1	ug/L	U	1	OK	1
Trip Blank	Chloromethane	1	ug/L	U	1	OK	1
Trip Blank	Methylene chloride	1	ug/L	U	1	OK	1
MW-04	Carbon tetrachloride	1	ug/L		1	OK	1
MW-04	Chloride	10	mg/L		1	OK	10
MW-04	Chloroform	20	ug/L		1	OK	20
MW-04	Chloromethane	1	ug/L	U	1	OK	1
MW-04	Methylene chloride	1	ug/L	U	1	OK	1
MW-04	Nitrate/Nitrite (as N)	1	mg/L		0.1	OK	10
TW4-01	Carbon tetrachloride	1	ug/L	U	1	OK	1
TW4-01	Chloride	10	mg/L		1	OK	10
TW4-01	Chloroform	10	ug/L		1	OK	10
TW4-01	Chloromethane	1	ug/L	U	1	OK	1
TW4-01	Methylene chloride	1	ug/L	U	1	OK	1
TW4-01	Nitrate/Nitrite (as N)	1	mg/L		0.1	OK	10
TW4-02	Carbon tetrachloride	1	ug/L		1	OK	1
TW4-02	Chloride	10	mg/L		1	OK	10
TW4-02	Chloroform	20	ug/L		1	OK	20
TW4-02	Chloromethane	1	ug/L	U	1	OK	1
TW4-02	Methylene chloride	1	ug/L	U	1	OK	1
TW4-02	Nitrate/Nitrite (as N)	1	mg/L		0.1	OK	10
TW4-03	Carbon tetrachloride	1	ug/L	U	1	OK	1
TW4-03	Chloride	5	mg/L		1	OK	5
TW4-03	Chloroform	1	ug/L	U	1	OK	1
TW4-03	Chloromethane	1	ug/L	U	1	OK	1
TW4-03	Methylene chloride	1	ug/L	Ū	1	OK	1
TW4-03	Nitrate/Nitrite (as N)	$\hat{1}$	mg/L		0.1	OK	10
TW4-03R	Carbon tetrachloride	1	ug/L	U	1	OK	1
TW4-03R	Chloride	1	mg/L	Ū	1	OK	1
TW4-03R	Chloroform	1	ug/L	Ū	1	OK	1
TW4-03R	Chloromethane	1	ug/L	U	1	OK	1
TW4-03R	Methylene chloride	1	ug/L	U	1	OK	1
TW4-03R	Nitrate/Nitrite (as N)	0.1	mg/L	U	0.1	OK	1
TW4-04	Carbon tetrachloride	1	ug/L	U	1	OK	1
TW4-04	Chloride	10	mg/L	- Ŭ	1	OK	10
TW4-04	Chloroform	10	ug/L		1	OK	10
TW4-04	Chloromethane	1	ug/L ug/L	U	1	OK	1
TW4-04	Methylene chloride	1	ug/L ug/L	U	1	OK	1
TW4-04	Nitrate/Nitrite (as N)	1	mg/L		0.1	OK	10
TW4-05	Carbon tetrachloride	1	ug/L	U	1	OK	10
TW4-05	Chloride	10	mg/L		1	OK	10
1 11 4-03	Cinoride	10	mg/L		1	OK	10

		Lab Reporting			Required Reporting		DILUTION
Location	Analyte	Limit	Units	Qualifier	Limit	RL Check	FACTOR
TW4-05	Chloroform	1	ug/L		1	OK	1
TW4-05	Chloromethane	1	ug/L	U	1	OK	11
TW4-05	Methylene chloride	1	ug/L	U	1	OK	_ 1
TW4-05	Nitrate/Nitrite (as N)	1	mg/L		0.1	OK	10
TW4-05R	Carbon tetrachloride	1	ug/L	U	1	OK	1
TW4-05R	Chloride	1	mg/L	U	1	OK	1
TW4-05R	Chloroform	1	ug/L	U	11	OK	1
TW4-05R	Chloromethane	11	ug/L	U	1	OK	1
TW4-05R	Methylene chloride	1	ug/L	U	11	OK	1
TW4-05R	Nitrate/Nitrite (as N)	0.1	mg/L	U	0.1	OK	1
TW4-06	Carbon tetrachloride	1	ug/L	U	1	OK	1
TW4-06	Chloride	10	mg/L		1	OK	10
TW4-06	Chloroform	1	ug/L		11	OK	11
TW4-06	Chloromethane	1	ug/L	UU	11	OK	11
TW4-06	Methylene chloride	1	ug/L	U	1	OK	1
TW4-06	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	OK	1
TW4-07	Carbon tetrachloride	1	ug/L	U	1	OK	1
TW4-07	Chloride	10	mg/L		1	OK	10
TW4-07	Chloroform	10	ug/L		1	OK	10
TW4-07	Chloromethane	1	ug/L	U	1	OK	11
TW4-07	Methylene chloride	1	ug/L	U	1	OK	1
TW4-07	Nitrate/Nitrite (as N)	1	mg/L		0.1	OK	10
TW4-08	Carbon tetrachloride	1	ug/L	U	1	OK	11
TW4-08	Chloride	10	mg/L		1	OK	10
TW4-08	Chloroform	11	ug/L	U	1	OK	1
TW4-08	Chloromethane	1	ug/L	U	1	OK	1
TW4-08	Methylene chloride	1	ug/L	U	1	OK	1
TW4-08	Nitrate/Nitrite (as N)	0.1	mg/L	U	0.1	OK	1
TW4-09	Carbon tetrachloride	1	ug/L	U	1	OK	11
TW4-09	Chloride	5	mg/L		1	OK	5
TW4-09	Chloroform	1	ug/L	U	1	OK	1
TW4-09	Chloromethane	1	ug/L	U	1	OK	1
TW4-09	Methylene chloride	1	ug/L	U	11	OK	1
TW4-09	Nitrate/Nitrite (as N)	1	mg/L		0.1	OK	10
TW4-10	Carbon tetrachloride	1	ug/L	U	11	OK	1
TW4-10	Chloride	10	mg/L		1	OK	10
TW4-10	Chloroform	10	ug/L		1	OK	10
TW4-10	Chloromethane	1	ug/L	U	1	OK	1
TW4-10	Methylene chloride	1	ug/L	U	1	OK	1
TW4-10	Nitrate/Nitrite (as N)	1	mg/L		0.1	OK	10
TW4-11	Carbon tetrachloride	1	ug/L	U	1	OK	1
TW4-11	Chloride	10	mg/L		1	OK	10
TW4-11	Chloroform	10	ug/L	7.7	1	OK	10
TW4-11	Chloromethane	1	ug/L	U	1	OK	1
TW4-11	Methylene chloride	1	ug/L	U	1	OK	1
TW4-11	Nitrate/Nitrite (as N)	1	mg/L	7.7	0.1	OK	10
TW4-12	Carbon tetrachloride	1	ug/L	U	1	OK	1
TW4-12	Chloride	5	mg/L	**	1	OK	5
TW4-12	Chloroform	1	ug/L	U	1	OK	1
TW4-12	Chloromethane	1	ug/L	U	1	OK	1
TW4-12	Methylene chloride	1	ug/L	U	1	OK	1
TW4-12	Nitrate/Nitrite (as N)	$\frac{1}{1}$	mg/L	- ,,	0.1	OK	10
TW4-13	Carbon tetrachloride	1	ug/L	U	1	OK	1
TW4-13	Chloride	10	mg/L		11	OK	10

	I-5 Reporting	Limit Check					
		Lab			Required		
		Reporting			Reporting		DILUTION
Location	Analyte	Limit	Units	Qualifier	Limit	RL Check	FACTOR
TW4-13	Chloroform	1	ug/L	U	1	OK	1
TW4-13	Chloromethane	1	ug/L	U	1	OK	1
TW4-13	Methylene chloride	11	ug/L	U	1	OK	1
TW4-13	Nitrate/Nitrite (as N)	1	mg/L		0.1	OK	10
TW4-14	Carbon tetrachloride	1	ug/L	U	1	OK	1
TW4-14	Chloride	5	mg/L		1	OK	5
TW4-14	Chloroform	1	ug/L	U	1	OK	1
TW4-14	Chloromethane	1	ug/L	U	11	OK	1
TW4-14	Methylene chloride	1	ug/L	U	1	OK	1
TW4-14	Nitrate/Nitrite (as N)	1	mg/L		0.1	OK	10
MW-26	Carbon tetrachloride	1	ug/L	U	1	OK	1
MW-26	Chloride	10	mg/L		1	OK	10
MW-26	Chloroform	20	ug/L		1	OK	20
MW-26	Chloromethane	1	ug/L	_ U _	1	OK	1
MW-26	Methylene chloride	1	ug/L		1	OK	11
MW-26	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	OK	1
TW4-16	Carbon tetrachloride	1	ug/L	U	1	OK	1
TW4-16	Chloride	10	mg/L		1	OK	10
TW4-16	Chloroform	1	ug/L	U	11	OK	1
TW4-16	Chloromethane	1	ug/L	U	1	OK	1
TW4-16	Methylene chloride	1	ug/L	U	1	OK	1
TW4-16	Nitrate/Nitrite (as N)	0.1	mg/L	U	0.1	OK	1
MW-32	Carbon tetrachloride	1	ug/L	U	1	OK	1
MW-32	Chloride	10	mg/L		1	OK	10
MW-32	Chloroform	1	ug/L	U	1	OK	1
MW-32	Chloromethane	1	ug/L	U	1	OK	1
MW-32	Methylene chloride	1	ug/L	U	1	OK	1
MW-32	Nitrate/Nitrite (as N)	0.1	mg/L	U	0.1	OK	1
TW4-18	Carbon tetrachloride	1	ug/L	U	. 1	OK	1
TW4-18	Chloride	5	mg/L		1	OK	5
TW4-18	Chloroform	1	ug/L		1	OK	1
TW4-18	Chloromethane	1	ug/L	U	1	OK	1
TW4-18	Methylene chloride	1	ug/L	U	1	OK	1
TW4-18	Nitrate/Nitrite (as N)	1	mg/L		0.1	OK	10
TW4-19	Carbon tetrachloride	1	ug/L		1	OK	1
TW4-19	Chloride	50	mg/L		1	OK	50
TW4-19	Chloroform	50	ug/L		1	OK	50
TW4-19	Chloromethane	1	ug/L	U	1	OK	1
TW4-19	Methylene chloride	1	ug/L	U	1	OK	1
TW4-19	Nitrate/Nitrite (as N)	1	mg/L		0.1	OK	10
TW4-20	Carbon tetrachloride	1 70	ug/L		1	OK	1
TW4-20	Chloride	50	mg/L		1	OK	50
TW4-20	Chloroform	500	ug/L		1	OK	500
TW4-20	Chloromethane	1	ug/L	U	1	OK	1
TW4-20	Methylene chloride	1	ug/L		1	OK	10
TW4-20	Nitrate/Nitrite (as N)	1	mg/L		0.1	OK	10
TW4-21	Carbon tetrachloride	1	ug/L		1	OK	1
TW4-21	Chloride	50	mg/L		1	OK	50
TW4-21	Chloroform	1	ug/L	**	1	OK	1
TW4-21	Chloromethane	1	ug/L	U	1	OK	1
TW4-21	Methylene chloride	1	ug/L	U	1	OK	1
TW4-21	Nitrate/Nitrite (as N)	1	mg/L		0.1	OK	10
TW4-22	Carbon tetrachloride	1	ug/L		1	OK	100
TW4-22	Chloride	100	mg/L		1	OK	100

Location		1-5 Reporting				D 1		
Location			Lab			Required		DII LIERON
TW4-22				TT 1:	0 110		DI CI I	DILUTION
TW4-22					Qualifier			FACTOR
TW4-22 Methylene chloride			100		TT			100
TW4-22								1
TW4-23					U			
TW4-23					TT			100
TW4-23					0			10
TW4-23					II			1
TW4-23 Methylene chloride 1 ug/L U 1 OK TW4-24 Carbon tetrachloride 1 ug/L U 1 OK TW4-24 Carbon tetrachloride 1 ug/L U 1 OK TW4-24 Chloride 100 mg/L 1 OK TW4-24 Chloroform 1 ug/L U 1 OK TW4-24 Chloroform 1 ug/L U 1 OK TW4-24 Chloroform 1 ug/L U 1 OK TW4-24 Chloromethane 1 ug/L U 1 OK TW4-24 Methylene chloride 1 ug/L U 1 OK TW4-24 Nitrate/Nitrite (as N) 10 mg/L U 1 OK TW4-25 Carbon tetrachloride 1 ug/L U 1 OK TW4-25 Chloride 50 mg/L U 1 OK TW4-25 Chloroform 1 ug/L U 1 OK TW4-25 Chloroform 1 ug/L U 1 OK TW4-25 Chloromethane 1 ug/L U 1 OK TW4-25 Methylene chloride 1 ug/L U 1 OK TW4-25 Methylene chloride 1 ug/L U 1 OK TW4-25 Nitrate/Nitrite (as N) 1 mg/L U 1 OK TW4-26 Carbon tetrachloride 1 ug/L U 1 OK TW4-26 Chloroform 1 ug/L U 1 OK TW4-26 Chloride 5 mg/L 1 OK TW4-26 Chloroform 1 ug/L U 1 OK TW4-26 Chloroform 1 ug/L U 1 OK TW4-26 Chloroform 1 ug/L U 1 OK TW4-26 Methylene chloride 1 ug/L U 1 OK TW4-26 Methylene chloride 1 ug/L U 1 OK TW4-26 Methylene chloride 1 ug/L U 1 OK TW4-27 Chloromethane 1 ug/L U 1 OK TW4-27 Chloroform 1 ug/L U 1 OK TW4-27 Methylene chloride 1 ug/L U 1 OK TW4-28 Chloroform 1 ug/L U 1 OK TW4-29 Chloroform 1 ug/L U 1 OK TW4-29 Chloromethane 1 ug/L U 1 OK TW4-29 Chloroform 1 ug								1
TW4-23								1
TW4-24								1
TW4-24 Chloride 100 mg/L 1 OK TW4-24 Chloroform 1 ug/L 1 OK TW4-24 Chloromethane 1 ug/L U 1 OK TW4-24 Methylene chloride 1 ug/L U 1 OK TW4-24 Nitrate/Nitrite (as N) 10 mg/L U 1 OK TW4-25 Carbon tetrachloride 1 ug/L U 1 OK TW4-25 Chloroform 1 ug/L U 1 OK TW4-25 Chloromethane 1 ug/L U 1 OK TW4-25 Methylene chloride 1 ug/L U 1 OK TW4-25 Mitrate/Nitrite (as N) 1 mg/L U 1 OK TW4-26 Carbon tetrachloride 1 ug/L U 1 OK TW4-26 Chloroform 1 ug/L U 1								1
TW4-24 Chloroform 1 ug/L 1 OK TW4-24 Chloromethane 1 ug/L U 1 OK TW4-24 Methylene chloride 1 ug/L U 1 OK TW4-24 Nitrate/Nitrite (as N) 10 mg/L U 1 OK TW4-25 Carbon tetrachloride 1 ug/L U 1 OK TW4-25 Chloroform 1 ug/L U 1 OK TW4-25 Chloroform 1 ug/L U 1 OK TW4-25 Chlorofende 1 ug/L U 1 OK TW4-25 Methylene chloride 1 ug/L U 1 OK TW4-25 Methylene chloride 1 ug/L U 1 OK TW4-26 Carbon tetrachloride 1 ug/L U 1 OK TW4-26 Chloromethane 1 ug/L U								100
TW4-24 Chloromethane 1 ug/L U 1 OK TW4-24 Methylene chloride 1 ug/L U 1 OK TW4-24 Nitrate/Nitrite (as N) 10 mg/L U 1 OK TW4-25 Carbon tetrachloride 1 ug/L U 1 OK TW4-25 Chloroform 1 ug/L U 1 OK TW4-25 Chloromethane 1 ug/L U 1 OK TW4-25 Chloromethane 1 ug/L U 1 OK TW4-25 Methylene chloride 1 ug/L U 1 OK TW4-26 Carbon tetrachloride 1 ug/L U 1 OK TW4-26 Chloroform 1 ug/L U 1 OK TW4-26 Chloromethane 1 ug/L U 1 OK TW4-26 Methylene chloride 1 ug/L								1
TW4-24 Methylene chloride 1 ug/L U 1 OK TW4-24 Nitrate/Nitrite (as N) 10 mg/L 0.1 OK TW4-25 Carbon tetrachloride 1 ug/L U 1 OK TW4-25 Chloride 50 mg/L U 1 OK TW4-25 Chloromethane 1 ug/L U 1 OK TW4-25 Chloromethane 1 ug/L U 1 OK TW4-25 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK TW4-26 Carbon tetrachloride 1 ug/L U 1 OK TW4-26 Chloride 5 mg/L 1 OK 1 OL 1 OK 1 OL 1 OK 1 OL 1 OK 1<					IJ			1
TW4-24 Nitrate/Nitrite (as N) 10 mg/L 0.1 OK TW4-25 Carbon tetrachloride 1 ug/L U 1 OK TW4-25 Chloride 50 mg/L 1 OK 1 OK TW4-25 Chloroform 1 ug/L U 1 OK 1								1
TW4-25 Carbon tetrachloride 1 ug/L U 1 OK TW4-25 Chloride 50 mg/L 1 OK TW4-25 Chloroform 1 ug/L U 1 OK TW4-25 Chloromethane 1 ug/L U 1 OK TW4-25 Methylene chloride 1 ug/L U 1 OK TW4-25 Nitrate/Nitrite (as N) 1 mg/L U 1 OK TW4-26 Carbon tetrachloride 1 ug/L U 1 OK TW4-26 Chloroform 1 ug/L U 1 OK TW4-26 Chloroform 1 ug/L U 1 OK TW4-26 Methylene chloride 1 ug/L U 1 OK TW4-26 Methylene chloride 1 ug/L U 1 OK TW4-26 Mitrate/Nitrite (as N) 1 mg/L U			10					100
TW4-25 Chloride 50 mg/L 1 OK TW4-25 Chloroform 1 ug/L U 1 OK TW4-25 Chloromethane 1 ug/L U 1 OK TW4-25 Methylene chloride 1 ug/L U 1 OK TW4-25 Nitrate/Nitrite (as N) 1 mg/L 0 0.1 OK TW4-26 Carbon tetrachloride 1 ug/L U 1 OK TW4-26 Chloroform 1 ug/L U 1 OK TW4-26 Chloromethane 1 ug/L U 1 OK TW4-26 Methylene chloride 1 ug/L U 1 OK TW4-26 Mitrate/Nitrite (as N) 1 mg/L 0.1 OK 0 TW4-27 Carbon tetrachloride 1 ug/L U 1 OK TW4-27 Chloroform 1 ug/L U					U			1
TW4-25 Chloroform 1 ug/L U 1 OK TW4-25 Chloromethane 1 ug/L U 1 OK TW4-25 Methylene chloride 1 ug/L U 1 OK TW4-25 Nitrate/Nitrite (as N) 1 mg/L U 1 OK TW4-26 Carbon tetrachloride 1 ug/L U 1 OK TW4-26 Chloroform 1 ug/L U 1 OK TW4-26 Chloroform 1 ug/L U 1 OK TW4-26 Methylene chloride 1 ug/L U 1 OK TW4-26 Mitrate/Nitrite (as N) 1 mg/L U 1 OK TW4-26 Methylene chloride 1 ug/L U 1 OK TW4-27 Carbon tetrachloride 1 ug/L U 1 OK TW4-27 Chloroform 1 ug/L			50			1		50
TW4-25 Chloromethane 1 ug/L U 1 OK TW4-25 Methylene chloride 1 ug/L U 1 OK TW4-25 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK TW4-26 Carbon tetrachloride 1 ug/L U 1 OK TW4-26 Chloroform 1 ug/L 1 OK Imag/L U 1 OK TW4-26 Chloromethane 1 ug/L U 1 OK Imag/L U					U	1		1
TW4-25 Methylene chloride 1 ug/L U 1 OK TW4-25 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK TW4-26 Carbon tetrachloride 1 ug/L U 1 OK TW4-26 Chloride 5 mg/L 1 OK OK TW4-26 Chloromethane 1 ug/L U 1 OK TW4-26 Methylene chloride 1 ug/L U 1 OK TW4-26 Methylene chloride 1 ug/L U 1 OK TW4-26 Nitrate/Nitrite (as N) 1 mg/L U 1 OK TW4-27 Carbon tetrachloride 1 ug/L U 1 OK TW4-27 Chloroform 1 ug/L U 1 OK TW4-27 Methylene chloride 1 ug/L U 1 OK TW4-27 Methylene chloride 1 ug/L					U			1
TW4-25 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK TW4-26 Carbon tetrachloride 1 ug/L U 1 OK TW4-26 Chloroform 1 ug/L 1 OK TW4-26 Chloromethane 1 ug/L U 1 OK TW4-26 Methylene chloride 1 ug/L U 1 OK TW4-26 Methylene chloride 1 ug/L U 1 OK TW4-26 Nitrate/Nitrite (as N) 1 mg/L U 1 OK TW4-27 Carbon tetrachloride 1 ug/L U 1 OK TW4-27 Chloroform 1 ug/L U 1 OK TW4-27 Chloromethane 1 ug/L U 1 OK TW4-27 Methylene chloride 1 ug/L U 1 OK TW4-27 Methylene chloride 1 ug/L U	TW4-25	Methylene chloride	1		U	1	OK	1
TW4-26 Carbon tetrachloride 1 ug/L U 1 OK TW4-26 Chloride 5 mg/L 1 OK TW4-26 Chloroform 1 ug/L U 1 OK TW4-26 Chloromethane 1 ug/L U 1 OK TW4-26 Methylene chloride 1 ug/L U 1 OK TW4-26 Nitrate/Nitrite (as N) 1 mg/L U 1 OK TW4-26 Nitrate/Nitrite (as N) 1 mg/L U 1 OK TW4-27 Carbon tetrachloride 1 ug/L U 1 OK TW4-27 Chloromethane 1 ug/L U 1 OK TW4-27 Methylene chloride 1 ug/L U 1 OK TW4-28 Carbon tetrachloride 1 ug/L U 1 OK TW4-28 Chloride 10 mg/L U			1			0.1	OK	10
TW4-26 Chloroform 1 ug/L 1 OK TW4-26 Chloromethane 1 ug/L U 1 OK TW4-26 Methylene chloride 1 ug/L U 1 OK TW4-26 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK TW4-27 Carbon tetrachloride 1 ug/L U 1 OK TW4-27 Chloride 5 mg/L U 1 OK TW4-27 Chloromethane 1 ug/L U 1 OK TW4-27 Methylene chloride 1 ug/L U 1 OK TW4-27 Methylene chloride 1 ug/L U 1 OK TW4-28 Carbon tetrachloride 1 ug/L U 1 OK TW4-28 Chloroform 1 ug/L U 1 OK TW4-28 Methylene chloride 1 ug/L U 1	TW4-26	Carbon tetrachloride	1		U	1	OK	1
TW4-26 Chloromethane 1 ug/L U 1 OK TW4-26 Methylene chloride 1 ug/L U 1 OK TW4-26 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK TW4-27 Carbon tetrachloride 1 ug/L U 1 OK TW4-27 Chloride 5 mg/L U 1 OK TW4-27 Chloroform 1 ug/L U 1 OK TW4-27 Chloromethane 1 ug/L U 1 OK TW4-27 Methylene chloride 1 ug/L U 1 OK TW4-27 Mitrate/Nitrite (as N) 10 mg/L 0.1 OK TW4-28 Carbon tetrachloride 1 ug/L U 1 OK TW4-28 Chloroform 1 ug/L U 1 OK TW4-28 Chloromethane 1 ug/L U 1	TW4-26	Chloride	5	mg/L		1	OK	5
TW4-26 Methylene chloride 1 ug/L U 1 OK TW4-26 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK TW4-27 Carbon tetrachloride 1 ug/L U 1 OK TW4-27 Chloride 5 mg/L U 1 OK TW4-27 Chloromethane 1 ug/L U 1 OK TW4-27 Chloride 1 ug/L U 1 OK TW4-27 Methylene chloride 1 ug/L U 1 OK TW4-27 Nitrate/Nitrite (as N) 10 mg/L U 1 OK TW4-27 Nitrate/Nitrite (as N) 10 mg/L U 1 OK TW4-28 Carbon tetrachloride 1 ug/L U 1 OK TW4-28 Chloromethane 1 ug/L U 1 OK TW4-28 Nitrate/Nitrite (as N) 1 mg/L	TW4-26	Chloroform	11	ug/L		1	OK	1
TW4-26 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK TW4-27 Carbon tetrachloride 1 ug/L U 1 OK TW4-27 Chloride 5 mg/L 1 OK TW4-27 Chloroform 1 ug/L U 1 OK TW4-27 Chloromethane 1 ug/L U 1 OK TW4-27 Methylene chloride 1 ug/L U 1 OK TW4-27 Nitrate/Nitrite (as N) 10 mg/L 0.1 OK TW4-27 Nitrate/Nitrite (as N) 10 mg/L U 1 OK TW4-28 Carbon tetrachloride 1 ug/L U 1 OK TW4-28 Chloroform 1 ug/L U 1 OK TW4-28 Methylene chloride 1 ug/L U 1 OK TW4-28 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK <td>TW4-26</td> <td>Chloromethane</td> <td>1</td> <td>ug/L</td> <td>U</td> <td>1</td> <td>OK</td> <td>1</td>	TW4-26	Chloromethane	1	ug/L	U	1	OK	1
TW4-27 Carbon tetrachloride 1 ug/L U 1 OK TW4-27 Chloride 5 mg/L 1 OK TW4-27 Chloroform 1 ug/L U 1 OK TW4-27 Chloromethane 1 ug/L U 1 OK TW4-27 Methylene chloride 1 ug/L U 1 OK TW4-27 Nitrate/Nitrite (as N) 10 mg/L U 1 OK TW4-28 Carbon tetrachloride 1 ug/L U 1 OK TW4-28 Chloroform 1 ug/L U 1 OK TW4-28 Chloromethane 1 ug/L U 1 OK TW4-28 Methylene chloride 1 ug/L U 1 OK TW4-28 Nitrate/Nitrite (as N) 1 mg/L U 1 OK TW4-29 Chloride 10 mg/L U	TW4-26	Methylene chloride	1	ug/L	U	1		1
TW4-27 Chloride 5 mg/L 1 OK TW4-27 Chloroform 1 ug/L U 1 OK TW4-27 Chloromethane 1 ug/L U 1 OK TW4-27 Methylene chloride 1 ug/L U 1 OK TW4-27 Nitrate/Nitrite (as N) 10 mg/L 0.1 OK TW4-28 Carbon tetrachloride 1 ug/L U 1 OK TW4-28 Chloride 10 mg/L U 1 OK TW4-28 Chloromethane 1 ug/L U 1 OK TW4-28 Methylene chloride 1 ug/L U 1 OK TW4-28 Methylene chloride 1 ug/L U 1 OK TW4-28 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK TW4-29 Carbon tetrachloride 1 ug/L U 1 OK<			1	mg/L		0.1		10
TW4-27 Chloroform 1 ug/L U 1 OK TW4-27 Chloromethane 1 ug/L U 1 OK TW4-27 Methylene chloride 1 ug/L U 1 OK TW4-27 Nitrate/Nitrite (as N) 10 mg/L 0.1 OK TW4-28 Carbon tetrachloride 1 ug/L U 1 OK TW4-28 Chloride 10 mg/L U 1 OK TW4-28 Chloromethane 1 ug/L U 1 OK TW4-28 Methylene chloride 1 ug/L U 1 OK TW4-28 Methylene chloride 1 ug/L U 1 OK TW4-28 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK TW4-29 Carbon tetrachloride 1 ug/L U 1 OK TW4-29 Chloroform 1 ug/L U 1		AND AND THE PARTY OF THE PARTY			U	1		1
TW4-27 Chloromethane 1 ug/L U 1 OK TW4-27 Methylene chloride 1 ug/L U 1 OK TW4-27 Nitrate/Nitrite (as N) 10 mg/L U 1 OK TW4-28 Carbon tetrachloride 1 ug/L U 1 OK TW4-28 Chloroform 1 ug/L U 1 OK TW4-28 Chloromethane 1 ug/L U 1 OK TW4-28 Methylene chloride 1 ug/L U 1 OK TW4-28 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK TW4-28 Nitrate/Nitrite (as N) 1 mg/L U 1 OK TW4-29 Carbon tetrachloride 1 ug/L U 1 OK TW4-29 Chloroform 1 ug/L U 1 OK TW4-29 Chloromethane 1 ug/L								5
TW4-27 Methylene chloride 1 ug/L U 1 OK TW4-27 Nitrate/Nitrite (as N) 10 mg/L 0.1 OK TW4-28 Carbon tetrachloride 1 ug/L U 1 OK TW4-28 Chloride 10 mg/L U 1 OK TW4-28 Chloroform 1 ug/L U 1 OK TW4-28 Methylene chloride 1 ug/L U 1 OK TW4-28 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK TW4-28 Nitrate/Nitrite (as N) 1 mg/L U 1 OK TW4-29 Carbon tetrachloride 1 ug/L U 1 OK TW4-29 Chloride 10 mg/L U 1 OK TW4-29 Chloroform 1 ug/L U 1 OK TW4-29 Methylene chloride 1 ug/L U								1
TW4-27 Nitrate/Nitrite (as N) 10 mg/L 0.1 OK TW4-28 Carbon tetrachloride 1 ug/L U 1 OK TW4-28 Chloride 10 mg/L U 1 OK TW4-28 Chloroform 1 ug/L U 1 OK TW4-28 Chloromethane 1 ug/L U 1 OK TW4-28 Methylene chloride 1 ug/L U 1 OK TW4-28 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK TW4-29 Carbon tetrachloride 1 ug/L U 1 OK TW4-29 Chloride 10 mg/L 1 OK TW4-29 Chloroform 1 ug/L U 1 OK TW4-29 Chloromethane 1 ug/L U 1 OK TW4-29 Methylene chloride 1 ug/L U 1 OK								1
TW4-28 Carbon tetrachloride 1 ug/L U 1 OK TW4-28 Chloride 10 mg/L 1 OK TW4-28 Chloroform 1 ug/L U 1 OK TW4-28 Chloromethane 1 ug/L U 1 OK TW4-28 Methylene chloride 1 ug/L U 1 OK TW4-28 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK TW4-29 Carbon tetrachloride 1 ug/L U 1 OK TW4-29 Chloride 10 mg/L 1 OK TW4-29 Chloroform 1 ug/L U 1 OK TW4-29 Methylene chloride 1 ug/L U 1 OK TW4-29 Methylene chloride 1 ug/L U 1 OK TW4-29 Nitrate/Nitrite (as N) 5 mg/L U 1 OK					U			1
TW4-28 Chloride 10 mg/L 1 OK TW4-28 Chloroform 1 ug/L U 1 OK TW4-28 Chloromethane 1 ug/L U 1 OK TW4-28 Methylene chloride 1 ug/L U 1 OK TW4-28 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK TW4-29 Carbon tetrachloride 1 ug/L U 1 OK TW4-29 Chloride 10 mg/L U 1 OK TW4-29 Chloromethane 1 ug/L U 1 OK TW4-29 Methylene chloride 1 ug/L U 1 OK TW4-29 Methylene chloride 1 ug/L U 1 OK TW4-29 Nitrate/Nitrite (as N) 5 mg/L 0.1 OK								100
TW4-28 Chloroform 1 ug/L U 1 OK TW4-28 Chloromethane 1 ug/L U 1 OK TW4-28 Methylene chloride 1 ug/L U 1 OK TW4-28 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK TW4-29 Carbon tetrachloride 1 ug/L U 1 OK TW4-29 Chloride 10 mg/L 1 OK TW4-29 Chloroform 1 ug/L U 1 OK TW4-29 Chloromethane 1 ug/L U 1 OK TW4-29 Methylene chloride 1 ug/L U 1 OK TW4-29 Nitrate/Nitrite (as N) 5 mg/L 0.1 OK					U			1
TW4-28 Chloromethane 1 ug/L U 1 OK TW4-28 Methylene chloride 1 ug/L U 1 OK TW4-28 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK TW4-29 Carbon tetrachloride 1 ug/L U 1 OK TW4-29 Chloride 10 mg/L 1 OK TW4-29 Chloroform 1 ug/L U 1 OK TW4-29 Chloromethane 1 ug/L U 1 OK TW4-29 Methylene chloride 1 ug/L U 1 OK TW4-29 Nitrate/Nitrite (as N) 5 mg/L 0.1 OK								10
TW4-28 Methylene chloride 1 ug/L U 1 OK TW4-28 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK TW4-29 Carbon tetrachloride 1 ug/L U 1 OK TW4-29 Chloride 10 mg/L 1 OK TW4-29 Chloroform 1 ug/L U 1 OK TW4-29 Chloromethane 1 ug/L U 1 OK TW4-29 Methylene chloride 1 ug/L U 1 OK TW4-29 Nitrate/Nitrite (as N) 5 mg/L 0.1 OK								1
TW4-28 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK TW4-29 Carbon tetrachloride 1 ug/L U 1 OK TW4-29 Chloride 10 mg/L 1 OK TW4-29 Chloroform 1 ug/L U 1 OK TW4-29 Chloromethane 1 ug/L U 1 OK TW4-29 Methylene chloride 1 ug/L U 1 OK TW4-29 Nitrate/Nitrite (as N) 5 mg/L 0.1 OK								1
TW4-29 Carbon tetrachloride 1 ug/L U 1 OK TW4-29 Chloride 10 mg/L 1 OK TW4-29 Chloroform 1 ug/L U 1 OK TW4-29 Chloromethane 1 ug/L U 1 OK TW4-29 Methylene chloride 1 ug/L U 1 OK TW4-29 Nitrate/Nitrite (as N) 5 mg/L 0.1 OK					U			1
TW4-29 Chloride 10 mg/L 1 OK TW4-29 Chloroform 1 ug/L U 1 OK TW4-29 Chloromethane 1 ug/L U 1 OK TW4-29 Methylene chloride 1 ug/L U 1 OK TW4-29 Nitrate/Nitrite (as N) 5 mg/L 0.1 OK								10
TW4-29 Chloroform 1 ug/L U 1 OK TW4-29 Chloromethane 1 ug/L U 1 OK TW4-29 Methylene chloride 1 ug/L U 1 OK TW4-29 Nitrate/Nitrite (as N) 5 mg/L 0.1 OK					U			1
TW4-29 Chloromethane 1 ug/L U 1 OK TW4-29 Methylene chloride 1 ug/L U 1 OK TW4-29 Nitrate/Nitrite (as N) 5 mg/L 0.1 OK					11			10
TW4-29 Methylene chloride 1 ug/L U 1 OK TW4-29 Nitrate/Nitrite (as N) 5 mg/L 0.1 OK								1
TW4-29 Nitrate/Nitrite (as N) 5 mg/L 0.1 OK								1
				-	U			50
1 W4-29 Carbon tetracinoride 1 ug/L U 1 OK					TT			50
TW4-29 Chloride 5 mg/L 1 OK					U			5
					-			10
					TT			10
								1
				$\overline{}$	U			10
TW4-29 Nitrate/Nitrite (as N) 1 mg/L 0.1 OK TW4-30 Carbon tetrachloride 1 ug/L U 1 OK					- 11			10
TW4-30 Carbon tetrachloride 1 ug/L 0 1 OK TW4-30 Chloride 5 mg/L 1 OK					U			5

		Lab Reporting			Required Reporting		DILUTION
Location	Analyte	Limit	Units	Qualifier	Limit	RL Check	FACTOR
TW4-30	Chloroform	1	ug/L	U	1	OK	1
TW4-30	Chloromethane	1	ug/L	U	1	OK	1
TW4-30	Methylene chloride	1	ug/L	U	11	OK	11
TW4-30	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	OK	1
TW4-31	Carbon tetrachloride	1	ug/L	U	1	OK	1
TW4-31	Chloride	5	mg/L		1	OK	5
TW4-31	Chloroform	1	ug/L	U	1	OK	11
TW4-31	Chloromethane	11	ug/L	U	1	OK	1
TW4-31	Methylene chloride	1	ug/L	U	1	OK	1
TW4-31	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	OK	1
TW4-60	Carbon tetrachloride	1	ug/L	U	1	OK	1
TW4-60	Chloride	1	mg/L	U	1	OK	1
TW4-60	Chloroform	1	ug/L	U	1	OK	11
TW4-60	Chloromethane	1	ug/L	U	1	OK	1
TW4-60	Methylene chloride	11	ug/L	U	1	OK	1
TW4-60	Nitrate/Nitrite (as N)	0.1	mg/L	U	0.1	OK	1
TW4-65	Carbon tetrachloride	1	ug/L	U	1	OK	1
TW4-65	Chloride	10	mg/L		1	OK	10
TW4-65	Chloroform	1	ug/L	U	11	OK	1
TW4-65	Chloromethane	1	ug/L	U	11	OK	1
TW4-65	Methylene chloride	1	ug/L	U	1	OK	1
TW4-65	Nitrate/Nitrite (as N)	1	mg/L		0.1	OK	10
TW4-70	Carbon tetrachloride	1	ug/L	U	1	OK	1
TW4-70	Chloride	5	mg/L		11	OK	5
TW4-70	Chloroform	_ 1	ug/L	U	1	OK	1
TW4-70	Chloromethane	1	ug/L	U	1	OK	1
TW4-70	Methylene chloride	1	ug/L	U	1	OK	1
TW4-70	Nitrate/Nitrite (as N)	0.1	mg/L	U	0.1	OK	1

U =The value was reported by the laboratory as nondetect

I-6 Trip Blank Evaluation

Lab Report	Constituent	Result
1308555	Carbon tetrachloride	ND ug/L
	Chloroform	ND ug/L
	Chloromethane	ND ug/L
	Methylene chloride	ND ug/L
1309103	Carbon tetrachloride	ND ug/L
	Chloroform	ND ug/L
	Chloromethane	ND ug/L
	Methylene chloride	ND ug/L
1309255	Carbon tetrachloride	ND ug/L
	Chloroform	ND ug/L
	Chloromethane	ND ug/L
	Methylene chloride	ND ug/L
1309526	Carbon tetrachloride	ND ug/L
	Chloroform	ND ug/L
	Chloromethane	ND ug/L
	Methylene chloride	ND ug/L

I-7 QA/QC Evaluation for Sample Duplicates

Constituent	TW4-03	TW4-65	%RPD
Chloride (mg/L)	24	24.2	1
Nitrate + Nitrite (as N)	6.26	5.98	5
Carbon Tetrachloride	ND	ND	NC
Chloroform	ND	ND	NC
Chloromethane	ND	ND	NC
Dichloromethane (Methylene Chloride)	ND	ND	NC

Constituent	TW4-08	TW4-70	%RPD
Chloride (mg/L)	47.5	47.7	0.42
Nitrate + Nitrite (as N)	ND	ND	NC
Carbon Tetrachloride	ND	ND	NC
Chloroform	ND	ND	NC
Chloromethane	ND	ND	NC
Dichloromethane (Methylene Chloride)	ND	ND	NC

RPD = Relative Percent Difference

I-8 QC Control Limits for Analysis and Blanks

Method Blank Detections

All Method Blanks for the quarter were non-detect.

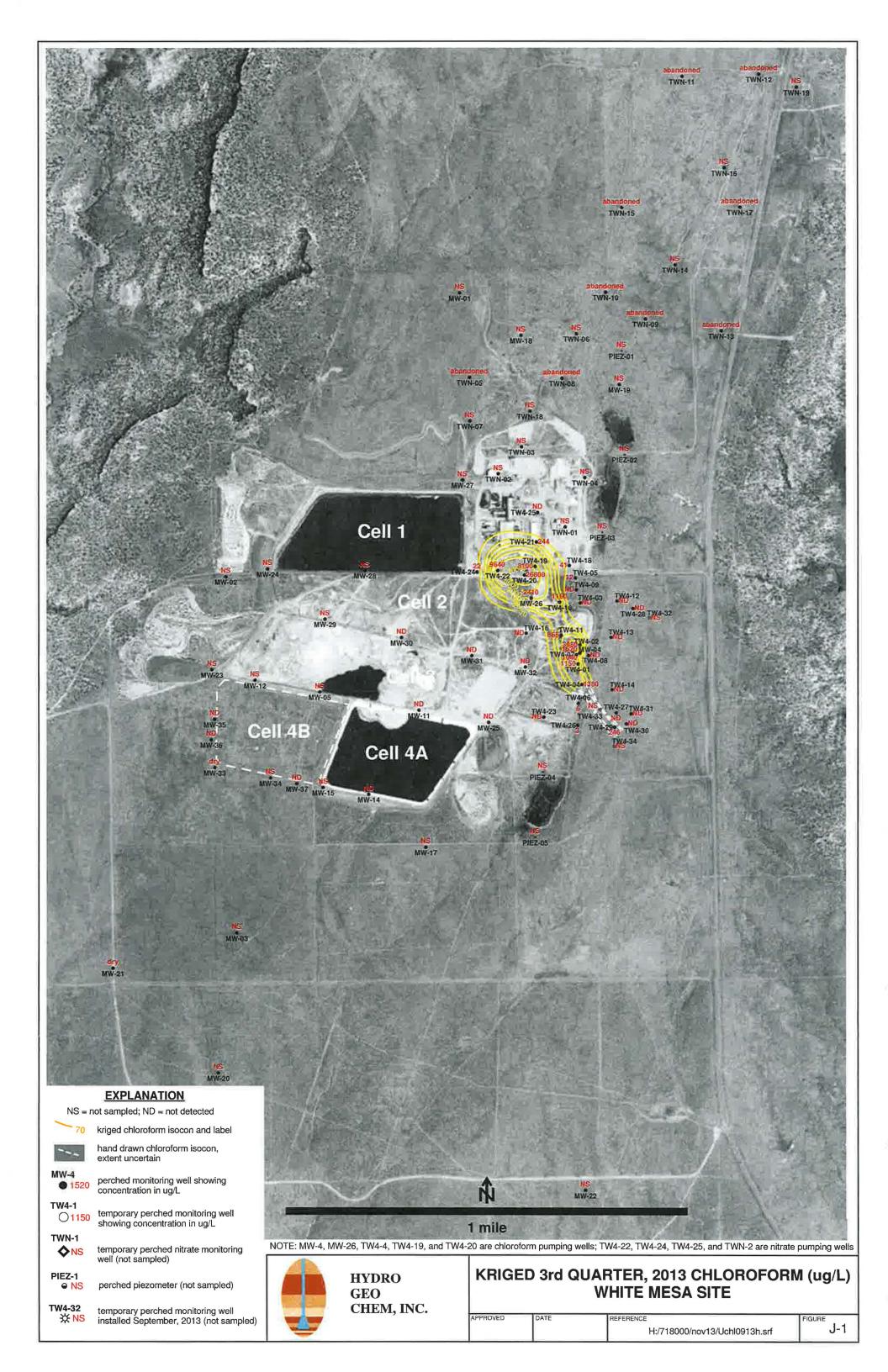
Matrix Spike % Recovery Comparison

					MSD	REC	
Lab Report	Lab Sample ID	Well	Analyte	MS %REC	%REC	Range	RPD
1308555	1308555-004BMS	TW4-14	Nitrate	130	119	90 - 110	6.57
1309255	1309255-005BMS	TW4-07	Nitrate	120	115	90 - 110	3.32
1309526	1309526-001BMS	TW4-29	Nitrate	125	139	90 - 110	7.80

Laboratory Control Sample

All Laboratory Control Samples were within acceptance limits for the quarter.

Surrogate % Recovery


All Surrogate recoveries were within acceptance limits for the quarter.

I-9 Rinsate Evaluation

All rinsate samples for the quarter were non-detect.

Tab J

Kriged Current Quarter Chloroform Isoconcentration Map

Tab K Analyte Concentrations Over Time

MW-4	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
28-Sep-99	6200	(ug/i)				
28-Sep-99	5820					
28-Sep-99	6020					7
15-Mar-00	5520					
15-Mar-00	5430					
2-Sep-00	5420				9.63	
30-Nov-00	6470				9.37	
29-Mar-01	4360				8.77	
22-Jun-01	6300				9.02	
20-Sep-01	5300				9.45	
8-Nov-01	5200				8	
26-Mar-02	4700				8.19	
22-May-02	4300				8.21	
12-Sep-02	6000				8.45	
24-Nov-02	2500				8.1	
28-Mar-03	2000				8.3	
30-Apr-03	3300				NA	
30-May-03	3400				8.2	
23-Jun-03	4300				8.2	
30-Jul-03	3600				8.1	
29-Aug-03	4100	•			8.4	
12-Sep-03	3500				8.5	
15-Oct-03	3800				8.1	
8-Nov-03	3800				8	
29-Mar-04	NA				NA	
22-Jun-04	NA				NA	
17-Sep-04	3300				6.71	
17-Nov-04	4300				7.5	
16-Mar-05	2900				6.3	
25-May-05	3170	NA	NA	NA	7.1	NA
31-Aug-05	3500	<10	<10	<10	7.0	NA
1-Dec-05	3000	<50	<50	<50	7.0	NA
9-Mar-06	3100	<50	<50	50	6	49
14-Jun-06	3000	<50	<50	50	6	49
20-Jul-06	2820	<50	<50	<50	1.2	48
9-Nov-06	2830	2.1	1.4	<1	6.4	50
28-Feb-07	2300	1.6	<1	<1	6.3	47
27-Jun-07	2000	1.8	<1	<1	7	45
15-Aug-07	2600	1.9	<1	<1	6.2	47
10-Oct-07	2300	1.7	<1	<1	6.2	45
26-Mar-08	2400	1.7	<1	<1	5.8	42
25-Jun-08	2500	1.6	<1	<1	6.09	42
10-Sep-08	1800	1.8	<1	<1	6.36	35
15-Oct-08	2100	1.7	<1	<1	5.86	45
4-Mar-09	2200	1.5	<1	<1	5.7	37

MW-4	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
23-Jun-09	1800	1.3	<1	<1	5.2	34
14-Sep-09	2000	1.4	<1	<1	5.3	43
14-Dec-09	1800	1.6	ND	ND	5.8	44
17-Feb-10	1600	1.2	ND	ND	4	45
14-Jun-10	2100	1.2	ND	ND	5.1	41
16-Aug-10	1900	1.5	ND	ND	4.8	38
11-Oct-10	1500	1.4	ND	ND	4.9	41
23-Feb-11	1700	1.5	ND	ND	4.6	40
1-Jun-11	1700	1.4	ND	ND	4.9	35
17-Aug-11	1700	1.1	ND	ND	4.9	41
16-Nov-11	1600	1.3	ND	ND	5.1	40
23-Jan-12	1500	11	ND	ND	4.8	41
6-Jun-12	1400	1.2	ND	ND	4.9	39
4-Sep-12	1500	1.5	ND	ND	5	41
4-Oct-12	1300	1	ND	ND	4.8	42
11-Feb-13	1670	1.49	ND	ND	4.78	37.8
5-Jun-13	1490	1.31	ND	ND	4.22	44
3-Sep-13	1520	1.13	ND	ND	4.89	41.4

TW4-1	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
28-Jun-99	1700				7.2	
10-Nov-99	5.8					
15-Mar-00	1100					
10-Apr-00	1490					
6-Jun-00	1530					
2-Sep-00	2320				5.58	
30-Nov-00	3440				7.79	
29-Mar-01	2340				7.15	Ì
22-Jun-01	6000				8.81	
20-Sep-01					12.8	
8-Nov-01	3200				12.4	
26-Mar-02	3200				13.1	i
22-May-02	2800				12.7	
12-Sep-02	3300				12.8	
24-Nov-02	3500				13.6	
28-Mar-03	3000				12.4	
23-Jun-03	3600				12.5	
12-Sep-03	2700				12.5	
8-Nov-03	3400				11.8	
29-Mar-04	3200				11	
22-Jun-04	3100				8.78	
17-Sep-04	2800				10.8	
17-Nov-04	3000				11.1	
16-Mar-05	2700				9.1	
25-May-05	3080	NA	NA	NA	10.6	NA
31-Aug-05	2900	<10	<10	<10	9.8	NA
1-Dec-05	2400	<50	<50	<50	9.7	NA
9-Mar-06	2700	<50	<50	<50	9.4	49
14-Jun-06	2200	<50	<50	<50	9.8	48
20-Jul-06	2840	<50	<50	<50	9.7	51
8-Nov-06	2260	1.4	<1	<1	9.4	47
28-Feb-07	1900	1.2	<1	<1	8.9	47
27-Jun-07	1900	1.4	<1	<1	9	45
15-Aug-07	2300	1.3	<1	<1	8.4	43
10-Oct-07	2000	1.3	<1	<1	7.8	43
26-Mar-08	2000	1.3	<1	<1	7.6	39
25-Jun-08	1900	1.1	<1	<1	8.68	39
10-Sep-08	1700	1.3	<1	<1	8.15	35
15-Oct-08	1700	1.3	<l< td=""><td><1</td><td>9.3</td><td>41</td></l<>	<1	9.3	41

•

. .

TW4-1	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
11-Mar-09	1700	1.1	<1	<1	7.5	37
24-Jun-09	1500	1	<1	<1	6.9	37
15-Sep-09	1700	<1	<1	<1	7.3	36
29-Dec-09	1400	<1	<1	<1	6.8	41
3-Mar-10	1300	<1	<1	<1	7.1	35
15-Jun-10	1600	1.2	<1	<1	6.8	40
24-Aug-10	1500	<1	<1	<1	6.8	35
14-Oct-10	1500	<1	<1	<1	6.6	40
24-Feb-11	1300	ND	ND	ND	6.6	41
1-Jun-11	1200	ND	ND	ND	7	35
18-Aug-11	1300	ND	ND	ND	6.8	36
29-Nov-11	1300	ND	ND	ND	6.6	37
19-Jan-12	1300	ND	ND	ND	6.8	38
14-Jun-12	1000	ND	ND	ND	7.1	42
13-Sep-12	1000	ND	ND	ND	5	39
4-Oct-12	1100	ND	ND	ND	6.5	40
13-Feb-13	1320	3.66	ND	ND	6.99	37.6
19-Jun-13	1100	ND	ND	ND	6.87	39.1
12-Sep-13	1150	ND	ND	ND	7.12	37.6

...

TW4-2	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (me/h)
10-Nov-99	2510					
2-Sep-00	5220					
28-Nov-00	4220				10.7	
29-Mar-01	3890				10.2	
22-Jun-01	5500				9.67	
20-Sep-01	4900				11.4	
8-Nov-01	5300				10.1	
26-Mar-02	5100				9.98	
23-May-02	4700				9.78	
12-Sep-02	6000				9.44	
24-Nov-02	5400				10.4	
28-Mar-03	4700				9.5	
23-Jun-03	5100				9.6	
12-Sep-03	3200				8.6	
8-Nov-03	4700				9.7	
29-Mar-04	4200				9.14	
22-Jun-04	4300				8.22	
17-Sep-04	4100				8.4	
17-Nov-04	4500				8.6	
16-Mar-05	3700	_			7.7	
25-May-05	3750				8.6	
31-Aug-05	3900	<10	<10	<10	8	NA
1-Dec-05	3500	<50	<50	<50	7.8	NA
9-Mar-06	3800	<50	<50	<50	7.5	56
14-Jun-06	3200	<50	<50	<50	7.1	56
20-Jul-06	4120	<50	<50	<50	7.4	54
8-Nov-06	3420	2.3	<1	<1	7.6	55
28-Feb-07	2900	1.8	<1	<1	7.3	54
27-Jun-07	3000	2.5	<1	<1	7.8	50
15-Aug-07	340	2.2	<1	<1	7.3	49
10-Oct-07	3200	2.1	<1	<1	6.9	51
26-Mar-08	3300	2.3	<1	<1	6.9	48
25-Jun-08	3100	2.2	<1	<1	7.44	46
10-Sep-08	2800	2.4	<1	<l< td=""><td>7.1</td><td>42</td></l<>	7.1	42
15-Oct-08	3200	2.4	<2	<2	7.99	47
11 -M ar-09	3100	2.2	<1	<1	6.5	46
24-Jun-09	2800	2	<1	<1	6.4	44
15-Sep-09	3000	2	<1	<1	6.6	43
29-Dec-09	1600	2	<1	<1	6.4	46

TW4-2	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mp/l)	(Eliloride (ing/l)
3-Mar-10	2600	2	<1	<1	6.8	42
15-Jun-10	3300	2.6	<1	<1	6.7	43
16-Aug-10	3300	2.5	<1	<1	6.6	43
14-Oct-10	3000	2.1	<1	<1	6.5	41
24-Feb-11	3100	2.4	ND	ND	7	46
2-Jun-11	3000	2.2	ND	ND	6.8	42
17-Aug-11	2400	1.6	ND	ND	6	48
29-Nov-11	3900	2.8	ND	ND	7	49
24-Jan-12	2500	2	ND	ND	7.1	49
14-Jun-12	2500	2.1	ND	ND	7.7	52
13-Sep-12	2900	1.8	ND	ND	4	76
4-Oct-12	3100	2	ND	ND	7.6	49
13-Feb-13	3580	5.17	ND	ND	8.1	46
19-Jun-13	3110	2.65	ND	ND	7.51	46.9
12-Sep-13	3480	2.41	ND	ND	9.3	44.9

TW4-3	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	- Nitirate (mg/t)	Chloride (mg/l)
28-Jun-99	3500				7.6	
29-Nov-99	702					
15-Mar-00	834					
2-Sep-00	836				1.56	
29-Nov-00	836				1.97	
27-Mar-01	347				1.85	
21-Jun-01	390				2.61	
20-Sep-01	300				3.06	
7-Nov-01	170				3.6	
26-Mar-02	11				3.87	
21-May-02	204				4.34	
12-Sep-02	203				4.32	
24-Nov-02	102				4.9	
28-Mar-03	0				4.6	
23-Jun-03	Ö				4.8	
12-Sep-03	0				4.3	
8-Nov-03	0				4.8	
29-Mar-04	0				4.48	
22-Jun-04	0				3.68	
17-Sep-04	0				3.88	
17-Nov-04	0			î	4.1	
16-Mar-05	0				3.5	
25-May-05	<1	NA	NA	NA	3.7	NA
31-Aug-05	<1	<1	6.4	<1	3.5	NA
1-Dec-05	<1	<1	2.3	<1	3.3	NA
9-Mar-06	<1	<1	2.2	<1	3.3	26
14-Jun-06	<1	<l< td=""><td><1</td><td><1</td><td>3.2</td><td>26</td></l<>	<1	<1	3.2	26
20-Jul-06	<1	<i< td=""><td>1.6</td><td><1</td><td>2.9</td><td>26</td></i<>	1.6	<1	2.9	26
8-Nov-06	<1	<1	<1	<1	1.5	23
28-Feb-07	<1	<1	<1	<1	3.1	22
27-Jun-07	<1	<1	<1	<1	3.3	23
15-Aug-07	<1	<1	<1	<1	3.1	24
10-Oct-07	<1	<1	<1	<1	2.8	27
26-Mar-08	<1	<1	<1	<1	2.8	21
25-Jun-08	<1	<1	<1	<1	2.85	19
10-Sep-08	<1	<1	<1	<1	2.66	19
15-Oct-08	<1	<1	<1	<1	2.63	22
4-Mar-09	<1	<1	<1	<1	2.5	21
24-Jun-09	<1	<1	<1	<1	2.9	20

TW4-3	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Niticate:	(any/b) (Ahlor-late
15-Sep-09	<1	<1	<1	<1	2.8	21
16-Dec-09	<1	<1	<1	<1	2.5	22
23-Feb-10	<1	<Ī	<1	<1	2.8	23
8-Jun-10	<1	<1	<1	<1	3	24
10-Aug-10	<1	<1	<1	<l< td=""><td>3.1</td><td>22</td></l<>	3.1	22
5-Oct-10	<l< td=""><td><1</td><td><1</td><td><1</td><td>3.3</td><td>26</td></l<>	<1	<1	<1	3.3	26
15-Feb-11	ND	ND	ND	ND	3.5	23
25-May-11	ND	ND	ND	ND	3.7	23
16-Aug-11	ND	ND	ND	ND	4	23
15-Nov-11	ND	ND	ND	ND	4.4	23
17-Jan-12	ND	ND	ND	ND	4.3	21
31-May-12	ND	ND	ND	ND	4.4	24
29-Aug-12	ND	ND	ND	ND	4.9	25
3-Oct-12	ND	ND	ND	ND	4.8	25
7-Feb-13	ND	ND	ND	ND	5.05	23.7
29-May-13	ND	ND	ND	ND	5.83	23.8
29-Aug-13	ND	ND	ND	ND	6.26	24.0

TW4-4	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
6-Jun-00	0					
2-Sep-00	0					
28-Nov-00	3.9					
28-Mar-01	2260				1.02	
20-Jun-01	3100				14.5	
20-Sep-01	3200				14	
8-Nov-01	2900				14.8	
26-Mar-02	3400				15	
22-May-02	3200				13.2	
12-Sep-02	4000				13.4	
24-Nov-02	3800	1			12.6	
28-Mar-03	3300				13.4	
23-Jun-03	3600				12.8	
12-Sep-03	2900				12.3	
8-Nov-03	3500				12.3	
29-Mar-04	3200				12.2	
22-Jun-04	3500				12.1	
17-Sep-04	3100				11.1	
17-Nov-04	3600				10.8	
16-Mar-05	3100				11.6	
25-May-05	2400	NA	NA	NA	11.3	NA
31-Aug-05	3200	<10	<10	<10	9.9	NA
1-Dec-05	2800	<50	<50	<50	10.2	NA
9-Mar-06	2900	<50	<50	<50	9.5	51
14-Jun-06	2600	<50	<50	<50	8.6	48
20-Jul-06	2850	<50	<50	<50	9.7	50
8-Nov-06	2670	1.7	<1	<1	10.1	49
28-Feb-07	2200	1.5	<1	<1	9	49
27-Jun-07	2400	1.7	<1	<1	9.4	47
15-Aug-07	2700	1.5	<1	<1	9.5	45
10-Oct-07	2500	1.5	<1	<1	9.5	47
26-Mar-08	2800	1.6	<1	<1	9.2	43
25-Jun-08	2500	1.5	<1	<1	10.8	42
10-Sep-08	2200	1.4	<1	<1	8.83	39
15-Oct-08	2500	2	<2	<2	10.1	44
4-Mar-09	2200	1.2	<1	<1	10.2	37
24-Jun-09	1800	1.2	<1	<1	8.2	34
15-Sep-09	2000	1.1	<1	<1	8.4	39
29-Dec-09	950	1.1	<1	<1	7.6	41

TW4-4	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	(Nitreate (intg/l));	
17-Feb-10	1700	Ī	<1	<1	6.6	48
10-Jun-10	2000	1.2	<1	<1	7.6	35
16-Aug-10	2100	1.3	<1	<1	7.3	36
11-Oct-10	1700	1.3	<1	<1	7.1	38
23-Feb-11	1800	1.4	ND	ND	7	41
1-Jun-11	1700	1.2	ND	ND	7	35
17-Aug-11	1500	ND	ND	ND	6.6	40
16-Nov-11	1500	1	ND	ND	7	39
23-Jan-12	1200	ND	ND	ND	7.1	38
6-Jun-12	1500	ND	ND	ND	7.1	43
4-Sep-12	1600	1.2	ND	ND	7.1	39
3-Oct-12	1400	1	ND	ND	7	38
11-Feb-13	1460	1.12	ND	ND	7.36	39
5-Jun-13	1330	ND	ND	ND	6.3	39.6
3-Sep-13	1380	ND	ND	ND	7.22	38.8

TW4-5	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
20-Dec-99	29.5					
15-Mar-00	49.0					
2-Sep-00	124					
29-Nov-00	255					
28-Mar-01	236					
20-Jun-01	240					
20-Sep-01	240					
7-Nov-01	260					
26-Mar-02	260					
22-May-02	300					
12-Sep-02	330					
24-Nov-02	260				-	-
28-Mar-03	240					
23-Jun-03	290					
12-Sep-03	200					
8-Nov-03	240					
29-Mar-04	210					
22-Jun-04	200					
17-Sep-04	150					
17-Nov-04	180					
16-Mar-05	120					
25-May-05	113	NA	NA	NA	3.7	NA
31-Aug-05	82.0	<2.5	5.8	<2.5	6	NA
1-Dec-05	63.0	<2.5	2.5	<2.5	6	NA
9-Mar-06	66.0	<2.5	3.1	<2.5	6	52
14-Jun-06	51.0	<1	<2.5	<2.5	5.9	51
20-Jul-06	53.7	<1	<1	<1	6.7	54
8-Nov-06	47.1	<1	<1	<1	2.9	55
28-Feb-07	33.0	<1	<1	<1	7.8	57
27-Jun-07	26.0	<1	<1	<1	7	45
15-Aug-07	9.2	<1	<1	<1	7.7	38
10-Oct-07	9.4	<1	<1	<1	8.2	39
26-Mar-08	11.0	<l< td=""><td><1</td><td><1</td><td>7.4</td><td>36</td></l<>	<1	<1	7.4	36
25-Jun-08	9.3	<Ĭ	<1	<1	8.7	37
10-Sep-08	11.0	<1	<1	<1	7.91	34
15-Oct-08	10.0	<1	<1	<1	9.3	37
4-Mar-09	12.0	<1	<1	<1	7.9	34
24-Jun-09	13.0	<1	<1	<1	7.5	37
15-Sep-09	12.0	<1	<1	<1	8.3	48

TW4-5	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Mintane (mg//)	(Chloride (mg/l)
22-Dec-09	8.5	<1	<1	<1	7.5	41
25-Feb-10	13.0	<1	<1	<1	6.8	43
9-Jun-10	12.0	<1	<1	<1	7.1	28
11-Aug-10	12.0	<1	<1	<1	7	38
13-Oct-10	11.0	<l< td=""><td><1</td><td><1</td><td>7.2</td><td>41</td></l<>	<1	<1	7.2	41
22-Feb-11	10.0	ND	ND	ND	7	34
26-May-11	9.0	ND	ND	ND	7.2	35
17-Aug-11	10.0	ND	ND	ND	7.5	37
7-Dec-11	7.9	ND	ND	ND	6	30
18-Jan-12	7.6	ND	ND	ND	5.8	22
6-Jun-12	8.4	ND	ND	ND	8	39
11-Sep-12	12.0	ND	ND	ND	8.1	37
3-Oct-12	8.0	ND	ND	ND	7.7	38
13-Feb-13	10.8	ND	ND	ND	8.24	34.3
13-Jun-13	11.2	ND	ND	ND	10.7	36.5
5-Sep-13	11.6	ND	ND	ND	7.79	39.1

. -

. .

-

TW4-6	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
6-Jun-00	0	3182		2.83		
2-Sep-00	0					
28-Nov-00	0				ND	
26-Mar-01	0				0.13	
20-Jun-01	0				ND	
20-Sep-01	4				ND	
7-Nov-01	1				ND	
26-Mar-02	0				ND	
21-May-02	0				ND	
12-Sep-02	0				ND	
24-Nov-02	0				ND	
28-Mar-03	0				0.1	
23-Jun-03	0				ND	
12-Sep-03	0				ND	
8-Nov-03	0				ND	
29-Mar-04	0				ND	
22-Jun-04	0				ND	
17-Sep-04	0				ND	
17-Nov-04	0			,	ND	
16-Mar-05	0				0.2	
25-May-05	2.5	NA	NA	NA	0.4	NA
31-Aug-05	10.0	<1	2.8	<1	0.8	NA
1-Dec-05	17.0	<1	1.3	<1	0.9	NA
9-Mar-06	31.0	<1	<1	<1	1.2	31
14-Jun-06	19.0	<1	<1	<1	1	30
20-Jul-06	11.0	<1	<1	<1	0.6	37
8-Nov-06	42.8	<1	<1	<1	1.4	65
28-Feb-07	46.0	<1	<1	<1	1.5	32
27-Jun-07	11.0	<1	<1	<1	0.6	38
15-Aug-07	18.0	<1	<1	<1	0.7	36
10-Oct-07	18.0	<1	<1	<1	0.8	38
26-Mar-08	52.0	<1	<1	<1	1.1	33
25-Jun-08	24.0	<1	<1	<1	0.9	35
10-Sep-08	39.0	<1	<1	<1	1.14	35
15-Oct-08	37.0	<1	<1	<1	1.01	33
11-Mar-09	81.0	<1	<1	<1	2.2	35
24-Jun-09	120	<1	<1	<1	2.7	37
15-Sep-09	280	< l	<1	<1	5.0	37
22-Dec-09	250	<1	<1	<1	6.1	41
25-Feb-10	1000	<1	<1	<l< td=""><td>1.6</td><td>45</td></l<>	1.6	45
10-Jun-10	590	<1	<1	<1	2.5	33
12-Aug-10	630	<1	<1	<1	3.9	31
13-Oct-10	420	<1	<1	<1	4.3	41
23-Feb-11	47	ND	ND	NĎ	0.7	40

TW4-6	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	一种种种种类型的	Chloride (mg/l)
26-May-11	10	ND	ND	ND	0.3	42
17-Aug-11	16	ND	ND	ND	0.3	39
7-Dec-11	21	ND	ND	ND	0.8	36
18-Jan-12	38	ND	ND	ND	0.7	38
13-Jun-12	4.7	ND	ND	ND	0.2	40
11-Sep-12	6.9	ND	ND	ND	0.1	21
3-Oct-12	9.0	ND	ND	ND	0.2	41
13-Feb-13	6.9	ND	ND	ND	0.154	40.4
13-Jun-13	4.9	ND	ND	ND	0.155	37.9
5-Sep-13	5.9	ND	ND	ND	0.157	40.6

*

TW4-7	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
29-Nov-99	256	(08/1)		(49.4)		
15-Mar-00	616					
2-Sep-00	698					
29-Nov-00	684				1.99	
28-Mar-01	747				2.46	
20-Jun-01	1100			ji	2.65	
20-Sep-01	1200				3.38	
8-Nov-01	1100				2.5	
26-Mar-02	1500				3.76	
23-May-02	1600				3.89	
12-Sep-02	1500				3.18	
24-Nov-02	2300				4.6	
28-Mar-03	1800				4.8	
23-Jun-03	5200	-			7.6	
12-Sep-03	3600				7.6	
8-Nov-03	4500				7.1	
29-Mar-04	2500	-			4.63	
22-Jun-04	2900		-		4.83	
17-Sep-04	3100				5.59	
17-Nov-04	3800				6	
16-Mar-05	3100				5.2	
25-May-05	2700	NA	NA	NA	5.4	NA
31-Aug-05	3100	<10	<10	<10	5.2	NA
1-Dec-05	2500	<50	<50	<50	5.3	NA
9-Mar-06	1900	<50	<50	<50	1	48
14-Jun-06	2200	<50	<50	<50	4.5	47
20-Jul-06	2140	<50	<50	<50	4.7	51
8-Nov-06	2160	1.5	<1	<1	4.6	49
28-Feb-07	1800	1.1	<1	<1	5	47
27-Jun-07	2600	1.5	<1	<1	5.1	45
14-Aug-07	2300	1.4	<1	<1	4.7	44
10-Oct-07	1900	1.2	<1	<1	4.7	45
26-Mar-08	2200	1.3	<1	<1	4.2	43
25-Jun-08	1800	1.3	<1	<1	4.8	43
10-Sep-08	1600	1.4	<1	<1	4.16	35
15-Oct-08	1900	<2	<2	<2	4.01	40
11 - Mar-09	1800	1.2	<1	<1	3.7	35
24-Jun-09	1400	<1	<1	<1	3.8	37
15-Sep-09	1500	1.0	<1	<1	4.1	37

TW4-7	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chlorae .6mg/b
29-Dec-09	1300	<1	<l< td=""><td><1</td><td>4.2</td><td>37</td></l<>	<1	4.2	37
3-Mar-10	1200	<1	<1	<1	3.8	36
10-Jun-10	1100	<1	<1	<1	3.9	31
18-Aug-10	1500	1.1	<1	<1	3.9	36
13-Oct-10	1100	1.1	<1	<1	4	38
23-Feb-11	1300	ND	ND	ND	3.6	45
1-Jun-11	1200	ND	ND	ND	4	35
18-Aug-11	1200	ND	ND	ND	4.1	37
29-Nov-11	1000	ND	ND	ND	3.8	37
19-Jan-12	1000	ND	ND	ND	3.9	37
14-Jun-12	790	ND	ND	ND	4	41
13-Sep-12	870	ND	ND	ND	3.8	40
4-Oct-12	940	ND	ND	ND	3.8	41
13-Feb-13	1080	3.51	ND	ND	3.9	37.7
18-Jun-13	953	ND	ND	ND	4.04	39.3
12-Sep-13	1040	ND	ND	ND	4.17	36.4

TW4-8	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
29-Nov-99	0					
15-Mar-00	21.8					
2-Sep-00	102					
29-Nov-00	107				ND	
26-Mar-01	116				ND	
20-Jun-01	180				ND	
20-Sep-01	180				0.35	
7-Nov-01	180				ND	
26-Mar-02	190				0.62	
22-May-02	210				0.77	
12-Sep-02	300				ND	1
24-Nov-02	450				ND	
28-Mar-03	320				0.8	
23-Jun-03	420				ND	
12-Sep-03	66.0				ND	
8-Nov-03	21.0				0.1	
29-Mar-04	24.0				0.65	
22-Jun-04	110				0.52	
17-Sep-04	120				ND	
17-Nov-04	120				ND	
16-Mar-05	10.0				ND	
25-May-05	<1	NA	NA	NA	0.2	NA
31-Aug-05	1.1	<1	1.7	<1	<0.1	NA
30-Nov-05	<1	<1	<1	<1	<0.1	NA
9-Mar-06	1.3	<1	2.1	<1	0.3	39
14-Jun-06	1.0	<1	1.8	<1	< 0.1	37
20-Jul-06	<1	<1	<1	<1	0.1	39
8-Nov-06	<1	<1	<1	<1	< 0.1	40
28-Feb-07	2.5	<1	<1	<1	0.7	39
27-Jun-07	2.5	<1	<1	<1	0.2	42
15-Aug-07	1.5	<1	<1	<1	<0.1	42
10-Oct-07	3.5	<1	<1	<1	0.5	43
26-Mar-08	<1	<1	<1	<1	0.1	46
25-Jun-08	<1	<1	<1	<1	< 0.05	45
10-Sep-08	<1	<1	<1	<1	< 0.05	39
15-Oct-08	<1	<1	<1	<1	< 0.05	44
4-Mar-09	<1	<1	<1	<1	< 0.1	42
24-Jun-09	<1	<1	<1	<1	<0.1	44
15-Sep-09	<1	<1	<1	<1	<1	44

TW4-8	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nilveito Linguis	(Ohloride) (mg/l)
17-Dec-09	<1	<1	<1	<1	< 0.1	51
24-Feb-10	<1	<1	<1	<1	< 0.1	57
9-Jun-10	<1	<1	<1	<1	< 0.1	42
11-Aug-10	<1	<1	<1	<1	< 0.1	45
5-Oct-10	<1	<1	<1	<1	<0.1	46
16-Feb-11	ND	ND	ND	ND	ND	52
25-May-11	ND	ND	ND	ND	0.1	45
16-Aug-11	ND	ND	ND	ND	0.1	46
7-Dec-11	ND	ND	ND	ND	0.2	45
18-Jan-12	ND	ND	ND	ND	0.3	45
31-May-12	ND	ND	ND	ND	0.2	44
29-Aug-12	ND	ND	ND	ND	0.1	48
3-Oct-12	ND	ND	ND	ND	ND	47
7-Feb-13	ND	ND	ND	ND	0.411	46.6
30-May-13	ND	ND	ND	ND	ND	45.5
5-Sep-13	ND	ND	ND	ND	ND	47.5

TW4-9	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
20-Dec-99	4.2					
15-Mar-00	1.9					
2-Sep-00	14.2					
29-Nov-00	39.4				ND	
27-Mar-01	43.6				ND	
20-Jun-01	59.0				0.15	
20-Sep-01	19.0				0.4	
7-Nov-01	49.0				0.1	
26-Mar-02	41.0				0.5	
22-May-02	38.0				0.65	
12-Sep-02	49.0				0.2	
24-Nov-02	51.0				0.6	
28-Mar-03	34.0				0.6	
23-Jun-03	33.0				0.8	
12-Sep-03	32.0				1.1	
8-Nov-03	46.0				1.1	
29-Mar-04	48.0				0.82	
22-Jun-04	48.0				0.75	
17-Sep-04	39.0				0.81	
17-Nov-04	26.0				1.2	
16-Mar-05	3.8				1.3	
25-May-05	1.2	NA	NA	NA	1.3	NA
31-Aug-05	<1	<1	2.9	<1	1.3	NA
1-Dec-05	<1	<1	<1	<1	1.3	NA
9-Mar-06	<1	<1	2.6	<1	1.5	38
14-Jun-06	<1	<1	2.7	<1	1.5	39
20-Jul-06	<1	<1	<1	<1	0.9	41
8-Nov-06	<1	<1	<1	<1	0.7	44
28-Feb-07	<1	<1	<1	<i< td=""><td>0.6</td><td>44</td></i<>	0.6	44
27-Jun-07	21	<1	<1	<1	1.3	42
15-Aug-07	9.5	<1	<1	<1	1.8	38
10-Oct-07	8.7	<1	<1	<1	2	40
26-Mar-08	1.3	<1	<1	<1	2.1	35
25-Jun-08	1.0	<1	<1	<1	2.3	35
10-Sep-08	<1	<1	<1	<1	2.79	28
15-Oct-08	<1	<1	<1	<1	1.99	58
4-Mar-09	<1	<1	<1	<1	2.5	30
24-Jun-09	<1	<1	<1	<1	2.3	30
15-Sep-09	<1	<1	<1	<1	2.5	30

TW4-9	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)		Chloride. (mg/l)
17-Dec-09	< l	<1	<1	<1	1.7	37
23-Feb-10	<1	<1	<1	<1	1.7	47
9-Jun-10	<1	<1	<1	<1	1.5	33
11-Aug-10	<1	<1	<1	<1	1.2	40
6-Oct-10	<1	<i< td=""><td><1</td><td><1</td><td>1.8</td><td>34</td></i<>	<1	<1	1.8	34
17-Feb-11	ND	ND	ND	ND	1.3	41
25-May-11	ND	ND	ND	ND	3.4	38
16-Aug-11	ND	ND	ND	ND	4	21
7-Dec-11	ND	ND	ND	ND	2.3	38
18-Jan-12	ND	ND	ND	ND	2.3	28
31-May-12	ND	ND	ND	ND	4	23
30-Aug-12	ND	ND	ND	ND	3.9	22
3-Oct-12	ND	ND	ND	ND	3.8	21
7-Feb-13	ND	ND	ND	ND	4.12	20.6
30-May-13	ND	ND	ND	ND	4.49	21.4
5-Sep-13	ND	ND	ND	ND	4.03	22.7

TW4-10	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)e-	Chloride (ing/l)
21-Jan-02	14	- Abba-to		7-14		
26-Mar-02	16				0.14	
21-May-02	17				0.11	
12-Sep-02	6				ND	
24-Nov-02	14				ND	
28-Mar-03	29				0.2	
23-Jun-03	110				0.4	
12-Sep-03	74				0.4	
8-Nov-03	75				0.3	
29-Mar-04	22				0.1	
22-Jun-04	32				ND	
17-Sep-04	63				0.46	
17-Nov-04	120				0.4	
16-Mar-05	140				1.6	
25-May-05	62.4	NA	NA	NA	0.8	NA
31-Aug-05	110	<2.5	6.2	<2.5	1.1	NA
1-Dec-05	300	<2.5	<2.5	<2.5	3.3	NA
9-Mar-06	190	<5	<50	<50	2.4	50
14-Jun-06	300	<5	<50	<50	3.5	54
20-Jul-06	504	<5	<50	<50	6.8	61
8-Nov-06	452	<1	1.6	1	5.7	58
28-Feb-07	500	<1	<1	1	7.6	62
27-Jun-07	350	<1	<1	1	5.1	54
15-Aug-07	660	<1	<1	1	7.3	59
10-Oct-07	470	<1	<1	1	6.7	59
26-Mar-08	620	<1	<1	1	7.3	55
25-Jun-08	720	<1	<1	1	9.91	58
10-Sep-08	680	<1	<1	1	9.23	51
15-Oct-08	1200	<2	<2	2	10.5	61
11-Mar-09	1100	<1	<1	1	11.6	64
24-Jun-09	1200	<1	<1	1	9.8	62
15-Sep-09	910	<1	<1	1	8.1	51
22-Dec-09	300	<1	<1	<1	3.5	51
3-Mar-10	460	<1	<1	<1	5	49
10-Jun-10	220	<1	<1	<1	1.6	42
12-Aug-10	100	<1	<1	<1	0.8	38
13-Oct-10	1100	<1	<1	<1	11	52
23-Feb-11	620	ND	ND	ND	9	62
1-Jun-11	280	ND	ND	ND	3.3	42

TW4-10	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
17-Aug-11	180	ND	ND	ND	1.9	41
16-Nov-11	110	ND	ND	ND	1.1	45
19-Jan-12	76	ND	ND	ND	0.9	40
13-Jun-12	79	ND	ND	ND	0.8	46
12-Sep-12	130	ND	ND	ND	1.0	44
3-Oct-12	140	ND	ND	ND	1.6	45
13-Feb-13	154	ND	ND	ND	1.2	49.1
13-Jun-13	486	ND	ND	ND	5.6	51.5
12-Sep-13	1160	ND	ND	ND	13.0	67.9

TW4-11	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
21-Jan-02	4700					
26-Mar-02	4900				9.6	
22-May-02	5200				9.07	
12-Sep-02	6200				8.84	
24-Nov-02	5800				9.7	
28-Mar-03	5100				9.7	
23-Jun-03	5700				9.4	
12-Sep-03	4600				9.9	
8-Nov-03	5200				9.3	
29-Mar-04	5300				9.07	-
22-Jun-04	5700				8.74	
17-Sep-04	4800				8.75	
17-Nov-04	5800				9.7	
16-Mar-05	4400				8.7	
25-May-05	3590	NA	NA	NA	10.3	NA
31-Aug-05	4400	<10	<10	<10	9.4	NA
1-Dec-05	4400	<100	<100	<100	9.4	NA
9-Mar-06	4400	<50	<50	<50	9.2	56
14-Jun-06	4300	<50	<50	<50	10	56
20-Jul-06	4080	<50	<50	<50	10	55
8-Nov-06	3660	1.7	2.7	1.3	10	55
28-Feb-07	3500	1.3	<1	1.6	10.1	54
27-Jun-07	3800	1.6	<1	1.1	10.6	53
15-Aug-07	4500	1.7	<1	1.1	10.2	53
10-Oct-07	4400	1.6	<1	1.2	9.8	53
26-Mar-08	340	<1	<1	<i< td=""><td>7.7</td><td>63</td></i<>	7.7	63
25-Jun-08	640	<1	<1	<1	7.28	46
10-Sep-08	900	<1	<1	<1	7.93	42
15-Oct-08	1000	<2	<2	<2	9.46	47
11-Mar-09	1100	<1	<1	<1	7.3	49
24-Jun-09	980	<1	<1	<1	6.8	44
15-Sep-09	1000	<1	<1	<1	7	49
29-Dec-09	860	<1	<1	<1	6.6	46
3-Mar-10	820	<1	<1	<1	6.8	42
10-Jun-10	820	<1	<1	<1	6.9	40
12-Aug-10	800	<1	<1	<1	6.7	43
13-Oct-10	720	<1	<1	<1	6.4	49
23-Feb-11	1000	ND	ND	ND	6.5	46
1-Jun-11	930	ND	ND	ND	7.3	49

TW4-11	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chlorde ((ng/))
17-Aug-11	820	ND	ND	ND	7.1	48
16-Nov-11	1500	ND	ND	ND	7.1	46
24-Jan-12	610	ND	ND	ND	6.8	43
13-Jun-12	660	ND	ND	ND	6.7	52
13-Sep-12	740	ND	ND	ND	3	49
4-Oct-12	730	ND	ND	ND	7	50
13-Feb-13	867	3.23	ND	ND	6.83	47.3
18-Jun-13	788	ND	ND	ND	7.42	49.7
12-Sep-13	865	ND	ND	ND	7.8	46.6

TW4-12	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	(Chloride (mg/l)
12-Sep-02	2	_ \		\\\	2.54	ueros muse y
24-Nov-02	0				2.2	
28-Mar-03	0				1.9	
23-Jun-03	0				1.8	
12-Sep-03	0				1.8	
9-Nov-03	0				1.6	
29-Mar-04	0				1.58	
22-Jun-04	0				1.4	
17-Sep-04	0				1.24	
17-Nov-04	0				1.5	
16-Mar-05	0				1.4	
25-May-05	<1	NA	NA	NA	1.6	NA
31-Aug-05	<1	<1	5.8	<1	1.5	NA
1-Dec-05	<1	<1	1.9	<2	1.4	NA
9-Mar-06	<1	<1	2.6	<1	1.3	19
14-Jun-06	<1	<1	1.4	<1	1.4	16
20-Jul-06	<1	<1	<1	<1	* Ï.4	16
8-Nov-06	<1	<1	<1	<1	1.4	16
28-Feb-07	<1	<1	<1	<1	1.5	16
27-Jun-07	<1	<1	<1	<1	1,5	18
15-Aug-07	<1	<1	<l< td=""><td><1</td><td>1.4</td><td>29</td></l<>	<1	1.4	29
10-Oct-07	<1	<1	<1	<1	1.4	16
26-Mar-08	<1	<1	<1	<1	1.6	16
25-Jun-08	<1	<1	<1	<1	2.69	19
10-Sep-08	<1	<1	<1	<1	2.65	18
15-Oct-08	<1	<1	<1	<1	2.47	22
4-Mar-09	<1	<1	<1	<1	2.4	23
24-Jun-09	<1	<1	<l< td=""><td><1</td><td>3.8</td><td>22</td></l<>	<1	3.8	22
15-Sep-09	<1	<1	<1	<1	5.1	22
16-Dec-09	<1	<1	<1	<1	3.6	23
23-Feb-10	<1	<1	<i< td=""><td><1</td><td>4</td><td>22</td></i<>	<1	4	22
8-Jun-10	<1	<1	<1	<1	11	29
10-Aug-10	<1	<1	<1	<1	9	35
5-Oct-10	<1	<1	<1	<1	8	31
15-Feb-11	ND	ND	ND	ND	6.5	31
25-May-11	ND	ND	ND	ND	7	32
16-Aug-11	ND	ND	ND	ND	6.8	31
15-Nov-11	ND	ND	ND	ND	8	30
17-Jan-12	ND	ND	ND	ND	7.7	28

TW4-12	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	hlorida	Nitvate (mg/l)	Chilopide (chilopide
31-May-12	ND	ND	ND	ND	10	34
29-Aug-12	ND	ND	ND	ND	13	39
3-Oct-12	ND	ND	ND	ND	13	39
7-Feb-13	ND	ND	ND	ND	12.6	36.7
29-May-13	ND	ND	ND	ND	14.2	38.6
29-Aug-13	ND	ND	ND	ND	17.4	41.7

150

.

TW4-13	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	ND				ND	
24-Nov-02	ND				ND	
28-Mar-03	ND				0.2	
23-Jun-03	ND				0.2	
12-Sep-03	ND				ND	
9-Nov-03	ND				0.9	
29-Mar-04	ND				0.12	
22-Jun-04	ND				0.17	
17-Sep-04	ND				4.43	
17-Nov-04	ND				4.7	
16-Mar-05	ND	NA	NA	NA	4.2	NA
25-May-05 31-Aug-05	<1 <1	NA <i< td=""><td>3.1</td><td> NA </td><td>4.6</td><td>NA NA</td></i<>	3.1	NA	4.6	NA NA
1-Dec-05	<1	<1	<1	<1	4.3	NA NA
9-Mar-06	<1	<1 <1	1.7	<i< td=""><td>4.2</td><td>67</td></i<>	4.2	67
14-Jun-06	<1	<1	1.4	<1	4.9	66
20-Jul-06	<1	<1	<1	<1	4.3	65
8-Nov-06	<1	<1	<1	<1	0.8	33
28-Feb-07	<1	<1	<1	<1	4	59
27-Jun-07	<1	<1	<1	<1	4.6	59
15-Aug-07	<1	<1	<1	<1	4.4	58
10-Oct-07	<1	<1	<1	<1	4.1	58
26-Mar-08	<1	<1	<1	<1	3.8	54
25-Jun-08	<1	<1	<1	<1	4.24	58
10-Sep-08	<1	<1	<1	<1	4.26	50
15-Oct-08	<1	<1	<1	<1	4.63	58
4-Mar-09	<1	<1	<1	<1	3.7	58
24-Jun-09	<1	<1	<1	<1	1.2	57
15-Sep-09	<l< td=""><td><1</td><td><1</td><td><1</td><td>4.7</td><td>63</td></l<>	<1	<1	<1	4.7	63
16-Dec-09	<1	<1	<1	<1	4.1	60
24-Feb-10	<1	<1	<1	<1	4.3	53
8-Jun-10	<i< td=""><td><1</td><td><1</td><td><1</td><td>5.2</td><td>52</td></i<>	<1	<1	<1	5.2	52
10-Aug-10	<l< td=""><td><l< td=""><td><l< td=""><td><i< td=""><td>5.6</td><td>55</td></i<></td></l<></td></l<></td></l<>	<l< td=""><td><l< td=""><td><i< td=""><td>5.6</td><td>55</td></i<></td></l<></td></l<>	<l< td=""><td><i< td=""><td>5.6</td><td>55</td></i<></td></l<>	<i< td=""><td>5.6</td><td>55</td></i<>	5.6	55
5-Oct-10	<1	<1	<1	<1	5.8	55
15-Feb-11	ND	ND	ND	ND	5.5	60
25-May-11	ND	ND	ND	ND	5.4	56
16-Aug-11	ND	ND	ND	ND	5.2	60
15-Nov-11	ND	ND	ND	ND	5.9	54
17-Jan-12	ND	ND	ND	ND	5.5	55
31-May-12	ND	ND	ND	ND	6	59
29-Aug-12 3-Oct-12	ND ND	ND ND	ND ND	ND ND	6.2 5.9	60

TW4-13	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
7-Feb-13	ND	ND	ND	ND	6.31	59.3
29-May-13	ND	ND	ND	ND	6.84	.56
29-Aug-13	ND	ND	ND	ND	7.16	63.5

TW4-14	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
8-Nov-06	<1	<1	<1	<1	2.4	37
28-Feb-07	<1	<1	<1	<1	2.3	38
27-Jun-07	<1	<1	<1	<1	1.4	38
15-Aug-07	<1	<1	<1	<1	1.1	36
10-Oct-07	<1	<1	<1	<1	0.8	36
26-Mar-08	<1	<1	<1	<1	0.04	57
25-Jun-08	<1	<1	<1	<1	1.56	35
10-Sep-08	<1	<1	<1	<1	1.34	34
15-Oct-08	<l< td=""><td><i< td=""><td><l< td=""><td><1</td><td>0.76</td><td>40</td></l<></td></i<></td></l<>	<i< td=""><td><l< td=""><td><1</td><td>0.76</td><td>40</td></l<></td></i<>	<l< td=""><td><1</td><td>0.76</td><td>40</td></l<>	<1	0.76	40
4-Mar-09	<1	<1	<1	<1	1.6	35
24-Jun-09	<1	<1	<1	<1	1.4	36
15-Sep-09	<i< td=""><td><1</td><td><1</td><td><1</td><td>1.5</td><td>38</td></i<>	<1	<1	<1	1.5	38
16-Dec-09	<1	<1	<1	<1	1.4	34
3-Mar-10	<1	<1	<1	<1	2.5	33
8-Jun-10	<1	<1	<1	<1	2.9	49
10-Aug-10	<1	<1	<1	<1	2.8	35
6-Oct-10	<1	<1	<1	<1	2.9	29
15-Feb-11	ND	ND	ND	ND	1.8	25
16-Aug-11	ND	ND	ND	ND	2.6	33
15-Nov-11	ND	ND	ND	ND	1.7	15
17-Jan-12	ND	ND	ND	ND	1.9	20
31-May-12	ND	ND	ND	ND	3.3	35
29-Aug-12	ND	ND	ND	ND	3.9	37
3-Oct-12	ND	ND	ND	ND	4.2	37
7-Feb-13	ND	ND	ND	ND	4.63	35.2
30-May-13	ND	ND	ND	ND	4.37	38.6
29-Aug-13	ND	ND	ND	ND	4.51	37.6

MW-26	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitratë (mg/l)	Chloride (mg/h)
12-Sep-02	3				ND	
24-Nov-02	0				ND	
28-Mar-03	0				0.1	
23-Jun-03	7800				14.5	
15-Aug-03	7400				16.8	
12-Sep-03	2500				2.7	
25-Sep-03	2600				2.5	
29-Oct-03	3100				3.1	
8-Nov-03	3000				2.8	
29-Mar-04	NA				NA	
22-Jun-04	NA				NA	
17-Sep-04	1400				0.53	
17-Nov-04	300				0.2	
16-Mar-05	310				0.3	
30-Mar-05	230				0.2	
25-May-05	442	NA	NA	NA	0.2	NA
31-Aug-05	960	<5	5.4	<5	0.2	NA
1-Dec-05	1000	<50	<50	<50	0.3	NA
9-Mar-06	1100	<50	<50	<50	0.2	52
14-Jun-06	830	<50	<50	<50	0.2	52
20-Jul-06	2170	<50	<50	<50	1.4	65
8-Nov-06	282	<1	<1	2.8	0.3	54
28-Feb-07	570	<1	<1	5.5	0.5	56
27-Jun-07	300	<1	<1	13	0.4	49
15-Aug-07	1400	<1	<1	36	1	57
10-Oct-07	2000	<1	<1	14	0.6	57
26-Mar-08	930	<1	<1	40	0.1	49
25-Jun-08	1300	<1	<1	53	0.56	57
10-Sep-08	630	<1	<1	24	0.24	44
15-Oct-08	1700	<1	<1	100	0.65	64
4-Mar-09	950	<1	<1	51	0.4	49
24-Jun-09	410	<1	<1	12	0.2	48
15-Sep-09	850	<1	<i< td=""><td>30</td><td>0.1</td><td>46</td></i<>	30	0.1	46
14-Dec-09	1100	<1	<1	40	2.3	60
17-Feb-10	780	<1	<1	19	0.2	57
9-Jun-10	1900	<1	<1	28	1.1	58
16-Aug-10	2200	<1	<1	21	0.6	49
11-Oct-10	970	<1	<1	6.5	0.7	65
23-Feb-11	450	ND	ND	3.6	0.5	57

-

MW-26	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
31-May-11	1800	ND	ND	1.3	0.4	88
17-Aug-11	720	ND	ND	7.2	0.9	58
5-Dec-11	1800	ND	ND	2.9	2	69
7-Feb-12	2400	ND	ND	16	1.7	98
6-Jun-12	3000	ND	ND	21	2.5	73
4-Sep-12	3100	ND	ND	31	2.6	73
4-Oct-12	1200	ND	ND	4	1.8	68
11-Feb-13	2120	ND	ND	9.34	2.27	81.9
5-Jun-13	4030	ND	ND	52.4	2.11	77.9
3-Sep-13	2940	ND	ND	33.2	1.18	60.5

*

TW4-16	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nutrate (mg/l)	Chloride (mg/l)
12-Sep-02	140				ND	
24-Nov-02	200				ND	
28-Mar-03	260				ND	
23-Jun-03	370				ND	
12-Sep-03	350				ND	
8-Nov-03	400				ND	
29-Mar-04	430				ND	
22-Jun-04	530				ND	
17-Sep-04	400				ND	
17-Nov-04	350				ND	
16-Mar-05	240				ND	
25-May-05	212	NA	NA	NA	< 0.1	NA
31-Aug-05	85	<1	3.2	43	< 0.1	NA
1-Dec-05	14	<2.5	2.6	5.9	1.4	NA
9-Mar-06	39.0	<1	1.1	21	3	60
14-Jun-06	13.0	<1	2.4	8.9	1.9	55
20-Jul-06	5.2	<1	<1	2.7	2.7	60
8-Nov-06	13.6	<1	<1	9.2	5.6	62
28-Feb-07	8.7	<1	< l	6.5	12.3	79
27-Jun-07	2.6	<1	<1	1.8	9.9	75
15-Aug-07	7.1	<1	<1	5.1	5.4	66
10-Oct-07	1.4	<1	<1	<1	4.4	69
26-Mar-08	11.0	<1	<1	26	ND	52
25-Jun-08	<1	<1	<1	<1	1.46	58
10-Sep-08	10	<1	<1	14	10.5	71
15-Oct-08	3.9	<1	<1	6.6	9.82	89
4-Mar-09	<1	<1	<1	<1	9.6	78
24-Jun-09	<1	<1	<1	<1	8.9	76
15-Sep-09	<1	<1	<1	<1	8.8	79
17-Dec-09	<1	<1	<1	<1	5.2	76
24-Feb-10	<1	<1	<1	<1	4.2	77
9-Jun-10	2.1	<1	<1	<1	4.7	64
24-Aug-10	4.3	<1	<1	<1	4.6	72
6-Oct-10	3.0	<1	<1	<1	3.3	72
22-Feb-11	15.0	ND	ND	ND	7	86
26-May-11	16.0	ND	ND	ND	5	81
17-Aug-11	9.2	ND	ND	ND	1.7	63
16-Nov-11	ND	ND	ND	1.4	0.4	38
18-Jan-12	ND	ND	ND	1.7	0.1	48

TW4-16	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
31-May-12	ND	ND	ND	ND	ND	53
30-Aug-12	ND	ND	ND	ND	ND	59
3-Oct-12	ND	ND	ND	3	ND	53
7-Feb-13	ND	ND	ND	3	ND	58.1
30-May-13	ND	ND	ND	4.21	ND	49.8
5-Sep-13	ND	ND	ND	ND	ND	54.4

MW-32	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chlovide (mg/l)
12-Sep-02	1.6				ND	
24-Nov-02	ND				ND	
28-Mar-03	ND				ND	
23-Jun-03	ND				ND	
12-Sep-03	ND				ND	
8-Nov-03	ND				ND	
29-Mar-04	ND				ND	
22-Jun-04	ND	ĺ			ND	
17-Sep-04	ND				ND	
17-Nov-04	ND				ND	
16-Mar-05	ND	İ			ND	
30-Mar-05	ND				ND	
25-May-05	<1	NA	NA	NA	<0.1	NA
31-Aug-05	<1	<1	3.2	<1	<0.1	NA
1-Dec-05	<1	<1	<1	<1	<0.1	NA
9-Mar-06	<1	<1	<1	<1	<0.1	32
14-Jun-06	<1	<1	3.5	<1	<0.1	30
20-Jul-06	<1	<1	1.8	<1	<0.1	32
8-Nov-06	<1	<1	1.5	<1	<0.1	31
28-Feb-07	<1	<1	<1	<1	<0.1	32
27-Jun-07	<1	<1	<1	<1	<0.1	32
15-Aug-07	<1	<1	<1	<1	<0.1	31
10-Oct-07	<1	<1	<1	<1	<0.1	32
26-Mar-08	<1	<1	<1	<1	<0.1	31
25-Jun-08	<1	<1	<1	<1	< 0.05	29
10-Sep-08	<1	<1	<1	<1	< 0.05	30
15-Oct-08	<1	<1	<1	<1	< 0.05	26
4-Mar-09	<1	<1	<1	<1	<0.1	30
24-Jun-09	<1	<1	<1	<1	<0.1	31
15-Sep-09	<1	<1	<1	<1	<0.1	33
16-Dec-09	<1	<1	<1	<1	<0.1	34
17-Feb-10	<1	<1	<1	<1	<0.1	38
14-Jun-10	<1	<1	<1	<1	<0.1	32
16-Aug-10	<1	<1	<1	<1	<0.1	28
6-Oct-10	<1	<1	<1	<1	<0.1	24
23-Feb-11	ND	ND	ND	ND	ND	40
25-May-11	ND	ND	ND	ND	ND	31
16-Aug-11	ND	ND	ND	ND	ND	33
6-Dec-11	ND	ND	ND	ND	ND	32

MW-32	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	The state of the s	(mā/i); (giporde)
18-Jan-12	ND	ND	ND	ND	ND	21
4-Jun-12	ND	ND	ND	ND	ND	32
5-Sep-12	ND	ND	ND	ND	ND	33
10-Oct-12	ND	ND	ND	ND	ND	35
13-Feb-13	ND	ND	ND	ND	ND	34.3
18-Jun-13	ND	ND	ND	ND	ND	34.9
4-Sep-13	ND	ND	ND	ND	ND	33

TW4-18	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chlouid Z(mg/i)
12-Sep-02	440				1.49	
24-Nov-02	240				13.3	
28-Mar-03	160				13.1	
23-Jun-03	110				19	
12-Sep-03	68.0				19.9	
9-Nov-03	84.0				20.7	
29-Mar-04	90.0				14	
22-Jun-04	82.0				12.2	
17-Sep-04	38.0				14.5	
17-Nov-04	51.0				17.3	
16-Mar-05	38.0				14.1	
25-May-05	29.8	NA	NA	NA	12.9	NA
31-Aug-05	39	<1	2.8	<1	13.3	NA
1-Dec-05	14	<1	1.1	<1	7.3	NA
9-Mar-06	12.0	<1	1.1	<1	5.9	5.9
14 - Jun-06	12.0	<1	1.6	<1	4.7	35
20-Jul-06	10.8	<1	2.7	<1	6.1	35
8-Nov-06	139	<1	<1	<1	8.7	34
28-Feb-07	9.2	<1	<1	<1	5.1	30
27-Jun-07	8.0	<1	<1	<1	4.9	28
15-Aug-07	8.9	<1	<1	<1	5	32
10-Oct-07	7.4	<1	<1	<1	4.4	27
26-Mar-08	6.4	<1	<1	<1	0.7	23
25-Jun-08	5.7	<1	<1	<1	4.55	23
10-Sep-08	8.0	<1	<1	<1	4.68	26
15-Oct-08	9.4	<1	<1	<1	5,15	30
4-Mar-09	11.0	<1	<1	<1	5.2	29
24-Jun-09	16.0	<1	<1	<1	6.2	30
15-Sep-09	13.0	<1	<1	<1	5.9	26
22-Dec-09	8.2	<1	<1	<1	5.4	30
24-Feb-10	69.0	<1	<1	<1	5.1	41
9-Jun-10	29.0	<1	<1	<1	9	35
12-Aug-10	29.0	<1	<1	<1	9	37
13-Oct-10	30.0	<1	<1	<1	10	50
22-Feb-11	39.0	ND	ND	ND	10	52
26-May-11	26.0	ND	ND	ND	9	36
17-Aug-11	29.0	ND	ND	ND	4.6	23
7-Dec-11	28.0	ND	ND	ND	6.3	23
19-Jan-12	25.0	ND	ND	ND	4.4	18

TW4-18	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	i hlowdo	a Viligano g(ng/i)。	MATRICAL AND MATRICE AND A PARTY OF A PARTY
13-Jun-12	24.0	ND	ND	ND	6.6	30
11-Sep-12	38.0	ND	ND	ND	6.6	26
3-Oct-12	30.0	ND	ND	ND	6	27
13-Feb-13	34.9	ND	ND	ND	5.58	23.1
13-Jun-13	37.9	ND	ND	ND	8.86	22.9
5-Sep-13	41.0	ND	ND	ND	12.1	36.2

TW4-19	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/).	(Chloride (mg/l)
12-Sep-02	7700				47.6	
24-Nov-02	5400				42	
28-Mar-03	4200				61.4	
15-May-03	4700				NA	
23-Jun-03	4500				11.4	
15-Jul-03	2400				6.8	
15-Aug-03	2600				4	
12-Sep-03	2500				5.7	
25-Sep-03	4600				9.2	
29-Oct-03	4600				7.7	
9-Nov-03	2600				4.8	
29-Mar-04	NA				NA	
22-Jun-04	NA				NA	
16-Aug-04	7100				9.91	
17-Sep-04	2600				4.5	
17-Nov-04	1800				3.6	
16-Mar-05	2200				5.3	
25-May-05	1200				5.7	
31-Aug-05	1400	<5	<5	<5	4.6	NA
1-Dec-05	2800	<50	<50	<50	< 0.1	NA
9-Mar-06	1200	<50	<50	<50	4	86
14-Jun-06	1100	<50	<50	<50	5.2	116
20-Jul-06	1120	<50	<50	<50	4.3	123
8-Nov-06	1050	1.6	2.6	<1	4.6	134
28-Feb-07	1200	1.3	<1	<1	4	133
27-Jun-07	1800				2.3	
15-Aug-07	1100	1.9	<1	<1	4.1	129
10-Oct-07	1100	1.9	<1	<1	4	132
26-Mar-08	1800	2.9	<1	<1	2.2	131
25-Jun-08	1000	1	<1	<1	2.81	128
10-Sep-08	3600	8.6	<1	<1	36.2	113
15-Oct-08	4200	12	<1	<1	47.8	124
4-Mar-09	1100	1.2	<1	<1	3.2	127
24-Jun-09	990	1.2	<1	<1	2.4	132
15-Sep-09	6600	15	<1	<1	0.1	43
14-Dec-09	4700	16	<1	<1	26.7	124
17-Feb-10	940	1.3	<1	<1	2	144
9-Jun-10	1800	4.2	<1	<1	4.4	132
16-Aug-10	2000	4.9	<1	<1	5.9	142

TW4-19	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
11-Oct-10	1200	1.3	1>	<1	2.7	146
17-Feb-11	3400	17	ND	ND	17	135
7-Jun-11	4000	8.3	ND	ND	12	148
17-Aug-11	970	2.1	ND	ND	3	148
5-Dec-11	2200	5.4	ND	ND	5	148
23-Jan-12	650	1.5	ND	ND	0.6	138
6-Jun-12	460	1.1	ND	ND	2.4	149
5-Sep-12	950	3.5	ND	ND	2.5	149
3-Oct-12	1500	4	ND	ND	4.1	150
11-Feb-13	4210	5.15	ND	ND	7.99	164
5-Jun-13	2070	5.15	ND	ND	2.95	148
3-Sep-13	8100	20.7	ND	ND	17.6	179

TW4-20	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)		Chlovide (ing/l)
25-May-05	39000	NA	NA	NA	10.1	NA
31-Aug-05	3800	<10	<10	<10	2.9	NA
1-Dec-05	19000	<250	<250	<250	1.8	NA
9-Mar-06	9200	<500	<500	<500	3.8	120
14-Jun-06	61000	<500	<500	<500	9.4	235
20-Jul-06	5300	<1000	<1000	<1000	2.9	134
8-Nov-06	11000	7.1	1.9	2.2	3.5	124
28-Feb-07	4400	3.1	<1	1.1	4.2	124
27-Jun-07	1800	2.2	<1	<1	2.3	112
15-Aug-07	5200	3.5	<1	1.8	2.1	117
10-Oct-07	9000	6.8	<1	1.9	5.6	170
26-Mar-08	13000	9	<1	1.5	0.9	132
25-Jun-08	30000	13	<1	1.2	7.96	191
10-Sep-08	21000	15	<1	3.7	4.44	156
15-Oct-08	NA	NA	NA	NA	5.51	166
4-Mar-09	8200	5.7	<1	5.2	5.1	164
24-Jun-09	6800	4.9	<2	4.2	2.9	164
15-Sep-09	13000	8.4	<2	4.4	3.3	153
14-Dec-09	15000	14	<1	3	5.3	187
17-Feb-10	3500	2.7	<1	3.2	2	179
14-Jun-10	18000	11	<1	3.7	5.6	200
16-Aug-10	15000	12	<i< td=""><td>2.2</td><td>5.3</td><td>196</td></i<>	2.2	5.3	196
11-Oct-10	24000	20	<1	5.5	4.6	203
23-Feb-11	31000	27	ND	19	4.4	220
1-Jun-11	8100	10	ND	2.1	4.8	177
17-Aug-11	6800	7.3	ND	3.1	6.5	207
16-Nov-11	7900	7.2	ND	2.5	4.2	186
23-Jan-12	11000	10	ND	1.3	7.9	207
6-Jun-12	36000	33	ND	ND	11	262
4-Sep-12	13000	26	ND	ND	10.8	289
3-Oct-12	19000	22	ND	ND	11	302
11-Feb-13	18500	19.6	ND	1.21	9.07	252
5-Jun-13	26300	32.5	ND	1.13	9.76	250
3-Sep-13	26800	25.7	ND	2.14	8.65	260

TW4-21	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nikraie (mg/h	Chloride (mg/l)
25-May-05	192	NA	NA	NA	14.6	NA
31-Aug-05	78	<5	<5	<5	10.1	NA
1-Dec-05	86	<1	1.0	<1	9.6	NA
9-Mar-06	120	<2.5	<2.5	<2.5	8.5	347
14-Jun-06	130	<2.5	<2.5	<2.5	10.2	318
20-Jul-06	106	<2.5	<2.5	<2.5	8.9	357
8-Nov-06	139	2	<Ī	<1	8.7	296
28-Feb-07	160	1.8	<1	<1	8.7	306
27-Jun-07	300	5.8	<1	<1	8.6	327
15-Aug-07	140	<1	<1	<1	8.6	300
10-Oct-07	120	<1	<1	<1	8.3	288
26-Mar-08	380	7	<1	<i< td=""><td>14.3</td><td>331</td></i<>	14.3	331
25-Jun-08	160	1.7	<1	<1	8.81	271
10-Sep-08	120	1.6	<1	<1	7.57	244
15-Oct-08	170	2	<1	<2	8.00	284
11-Mar-09	180	<1	<1	<1	8.3	279
24-Jun-09	200	<1	<1	<1	8.1	291
15-Sep-09	140	<1	<1	<1	9.2	281
22-Dec-09	160	<1	<1	<1	8.4	256
25-Feb-10	170	<1	<1	<1	8.4	228
10-Jun-10	210	1.2	<1	<1	12	266
12-Aug-10	390	9.2	<1	<1	14	278
13-Oct-10	200	1.2	<1	<1	7	210
22-Feb-11	230	1.2	ND	ND	9	303
28-Jun-11	290	4.8	ND	ND	12	290
17-Aug-11	460	6.3	ND	ND	14	287
7-Dec-11	390	6.7	ND	ND	13	276
19-Jan-12	420	6.4	ND	ND	15	228
13-Jun-12	400	5.4	ND	ND	11	285
13-Sep-12	410	6	ND	ND	13	142
4-Oct-12	390	7	ND	ND	14	270
13-Jan-13	282	5.25	ND	ND	11.8	221
18-Jun-13	328	3.49	ND	ND	13.8	243
12-Sep-13	244	2.13	ND	ND	10.3	207

TW4-22	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/)	Chloride (mg/l)
25-May-05	340	NA	NA	NA	18.2	NA
31-Aug-05	290	<5	<5	<5	15.7	NA
1-Dec-05	320	<5	<5	<5	15.1	NA
9-Mar-06	390	<10	<10	<10	15.3	236
14-Jun-06	280	<10	<10	<10	14.3	221
20-Jul-06	864	<10	<10	<10	14.5	221
8-Nov-06	350	<1	1.6	<1	15.9	236
28-Feb-07	440	<1	<l< td=""><td><1</td><td>20.9</td><td>347</td></l<>	<1	20.9	347
27-Jun-07	740	<1	<1	<1	19.3	273
15-Aug-07	530	<1	<1	<1	19.3	259
10-Oct-07	440	<1	<1	<1	18.8	238
26-Mar-08	1400	<1	<1	<1	39.1	519
25-Jun-08	1200	<1	<1	<i< td=""><td>41.9</td><td>271</td></i<>	41.9	271
10-Sep-08	6300	1.3	<1	<1	38.7	524
15-Oct-08	630	<2	<2	<2	36.3	539
11-Mar-09	390	<1	<1	<l< td=""><td>20.7</td><td>177</td></l<>	20.7	177
24-Jun-09	730	<1	<1	<1	20.6	177
15-Sep-09	2300	<1	<1	<1	40.3	391
29-Dec-09	380	<1	<1	<1	17.8	175
3-Mar-10	2200	<Ī>	<1	<1	36.6	427
15-Jun-10	540	<1	<1	<1	19	134
24-Aug-10	340	<1	<1	<1	15	130
13-Oct-10	340	<1	<1	<1	16	134
23-Feb-11	1300	ND	ND	ND	18	114
1-Jun-11	210	ND	ND	ND	17	138
17-Aug-11	450	ND	ND	ND	15	120
7-Dec-11	400	ND	ND	ND	19	174
19-Jan-12	200	ND	ND	ND	14	36
13-Jun-12	120	ND	ND	ND	12.8	35
12-Sep-12	940	ND	ND	ND	7	121
4-Oct-12	330	ND	ND	ND	14	130
11-Feb-13	10600	3.24	ND	ND	58	635
5-Jun-13	12500	3.35	ND	ND	50.2	586
3-Sep-13	9640	3.25	ND	ND	29.7	487

TW4-23	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	(Nitrate (mg/l)	Chloride (mg/l)
27-Jun-07	<1	<1	<1	<1	<0.1	47
15-Aug-07	<1	<1	<1	<1	<0.1	46
10-Oct-07	<1	<1	<1	<1	<0.1	43
26-Mar-08	<1	<1	<1	<1	<0.1	41
25-Jun-08	<1	<1	<1	<1	< 0.05	41
10-Sep-08	<1	<1	<1	<1	< 0.05	35
15-Oct-08	<2	<2	<2	<2	< 0.05	51
4-Mar-09	<1	<1	<1	<1	<0.1	41
24-Jun-09	<1	<1	<1	<1	<0.1	43
15-Sep-09	<1	<1	<1	<1	<0.1	43
16-Dec-09	<1	<1	<1	<1	<0.1	37
24-Feb-10	<1	<1	<1	<1	< 0.1	45
8-Jun-10	<1	<1	<1	<1	<0.1	40
10-Aug-10	<1	<1	<1	<1	<0.1	40
5-Oct-10	<1	<1	<1	<1	<0.1	34
16-Feb-11	ND	ND	ND	ND	ND	44
25-May-11	ND	ND	ND	ND	ND	44
16-Aug-11	ND	ND	ND	ND	ND	41
15-Nov-11	ND	ND	ND	ND	ND	43
17-Jan-12	ND	ND	ND	ND	ND	40
31-May-12	ND	ND	ND	ND	ND	44
29-Aug-12	ND	ND	ND	ND	ND	46
3-Oct-12	ND	ND	ND	ND	ND	45
7-Feb-13	ND	ND	ND	ND	ND	43.6
30-May-13	ND	ND	ND	ND	0.116	44.7
5-Sep-13	ND	ND	ND	ND	ND	48.0

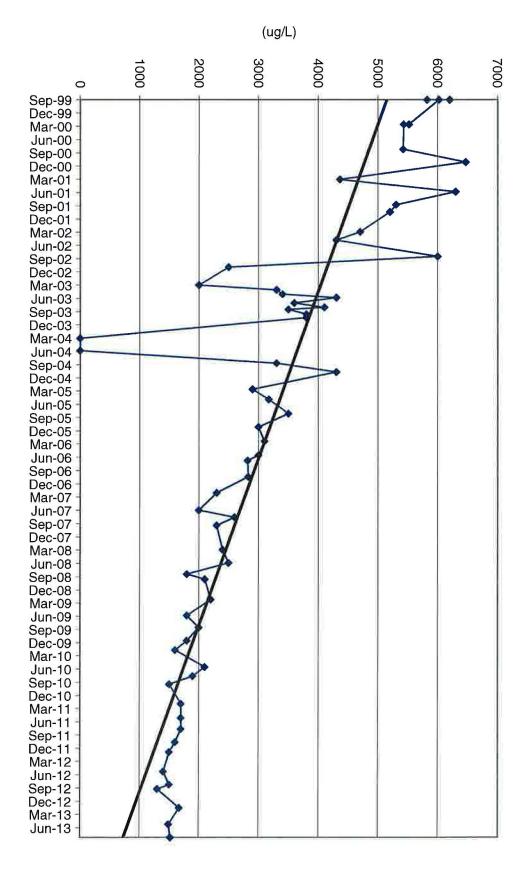
TW4-24	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
27-Jun-07	2.6	<1	<1	<1	26.1	770
15-Aug-07	2.2	<1	<1	<1	29	791
10-Oct-07	1.5	<1	<1	<1	24.7	692
26-Mar-08	1.5	<1	<1	<1	24.4	740
25-Jun-08	1.4	<1	<1	<1	45.3	834
10-Sep-08	2.9	<1	<1	<1	38.4	1180
15-Oct-08	<2	<2	<2	<2	44.6	1130
4-Mar-09	1.4	<1	<1	<1	30.5	1010
24-Jun-09	1.5	<1	<1	<1	30.4	759
15-Sep-09	1.4	<1	<1	<1	30.7	618
17-Dec-09	1.2	<1	<1	<1	28.3	1080
25-Feb-10	1.3	<1	<1	<1	33.1	896
9-Jun-10	1.7	<1	<1	<1	30	639
24-Aug-10	1.8	<Ī	<1	<1	31	587
6-Oct-10	1.4	<1	<1	<i< td=""><td>31</td><td>522</td></i<>	31	522
17-Feb-11	1.8	ND	ND	ND	31	1100
26-May-11	1.1	ND	ND	ND	35	1110
17-Aug-11	1.7	ND	ND	ND	34	967
7-Dec-11	1.2	ND	ND	ND	35	608
18-Jan-12	ND	ND	ND	ND	37	373
6-Jun-12	ND	ND	ND	ND	37	355
30-Aug-12	1.1	ND	ND	ND	37	489
3-Oct-12	1.0	ND	ND	ND	38	405
11-Feb-13	5.7	ND	ND	ND	35.9	1260
5-Jun-13	17.4	ND	ND	ND	23.7	916
3-Sep-13	21.8	ND	ND	ND	32.6	998

TW4-25	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitivate	Chloride (mg/l):
27-Jun-07	<1	<1	<1	<1	17.1	395
15-Aug-07	<1	<1	<1	<1	16.7	382
10-Oct-07	<1	<1	<1	<1	17	356
26-Mar-08	<1	<1	<1	<1	18.7	374
25-Jun-08	<1	<1	<1	<1	22.1	344
10-Sep-08	<1	<1	<l< td=""><td><1</td><td>18.8</td><td>333</td></l<>	<1	18.8	333
15-Oct-08	<2	<2	<2	<2	21.3	366
4-Mar-09	<1	<1	<l< td=""><td><1</td><td>15.3</td><td>332</td></l<>	<1	15.3	332
24-Jun-09	<1	<1	<1	<1	15.3	328
15-Sep-09	<1	<1	<1	<1	3.3	328
16-Dec-09	<1	<1	<1	<1	14.2	371
23-Feb-10	<1	<1	<1	<1	14.4	296
8-Jun-10	<1	<1	<1	<1	16	306
10-Aug-10	<1	<1	<1	<1	14	250
5-Oct-10	<1	<1	<1	<1	15	312
16-Feb-11	ND	ND	ND	ND	15	315
25-May-11	ND	ND	ND	ND	16	321
16-Aug-11	ND	ND	ND	ND	16	276
15-Nov-11	ND	ND	ND	ND	16	294
18-Jan-12	ND	ND	ND	ND	16	304
31-May-12	ND	ND	ND	ND	16	287
11-Sep-12	ND	ND	ND	ND	17	334
3-Oct-12	ND	ND	ND	ND	17	338
11-Feb-13	ND	ND	ND	ND	9.04	190
5-Jun-13	ND	ND	ND	ND	5.24	136
3-Sep-13	ND	ND	ND	ND	5.69	119

TW4-26	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nimate (mg/l)	Chiloride (mg/l)
15-Jun-10	13	<1	<1	<1	7.9	33
11-Aug-10	5	<1	<1	<1	9	17
6-Oct-10	5.4	<1	<1	<1	9.6	22
22-Feb-11	2.0	ND	ND	ND	10	30
26-May-11	2.9	ND	ND	ND	10	15
17-Aug-11	2.8	ND	ND	ND	11	19
7-Dec-11	5.2	ND	ND	ND	10	26
18-Jan-12	7.0	ND	ND	ND	11	17
6-Jun-12	4.1	ND	ND	ND	12	19
11-Sep-12	4.9	ND	ND	ND	9	19
3-Oct-12	6.0	ND	ND	ND	12	19
7-Feb-13	5.0	ND	ND	ND	12.5	16.6
13-Jun-13	2.1	ND	ND	ND	13.6	14.5
5-Sep-13	2.8	ND	ND	ND	11.7	17.6

TW4-27	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	· · · · · · · · · · · · · · · · · · ·	Chloride =(mg/l)
24-Jan-12	9	ND	ND	ND	24	11
13-Jun-12	ND	ND	ND	ND	41	17
30-Aug-12	ND	ND	ND	ND	37	21
3-Oct-12	ND	ND	ND	ND	36	18
7-Feb-13	ND	ND	ND	ND	31.2	18.8
30-May-13	ND	ND	ND	ND	29.4	20.3
29-Aug-13	ND	ND	ND	ND	27.2	19

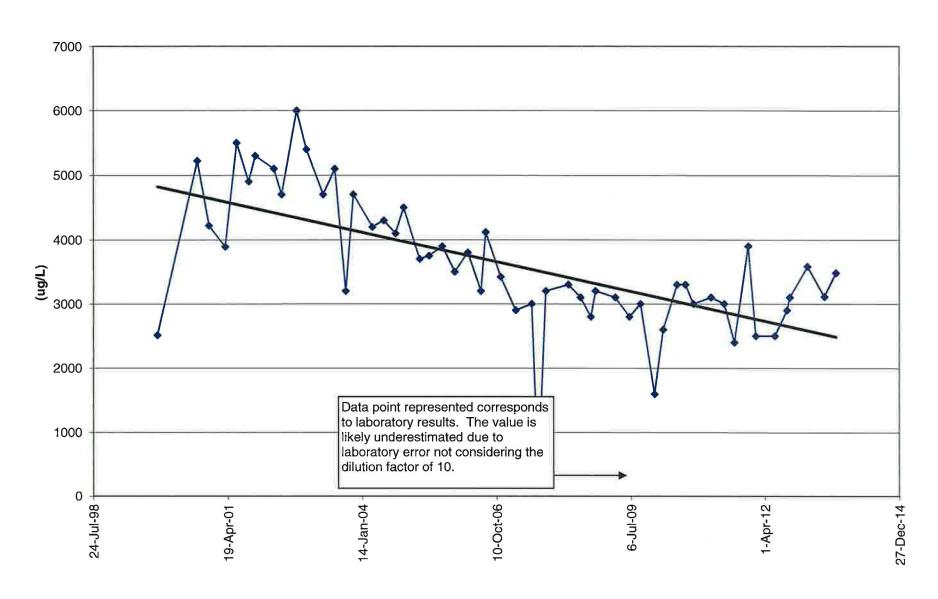
TW4-28	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
19-Jun-13	ND	ND	ND	ND	14.9	44.6
29-Aug-13	ND	ND	ND	ND	17.3	45.3


TW4-29	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
19-Jun-13	242	ND	ND	ND	4.63	44.8
11-Jul-13	262	ND	ND	ND	3.52	37.7
26-Sep-13	246	ND	ND	ND	4.18	41.4

. .

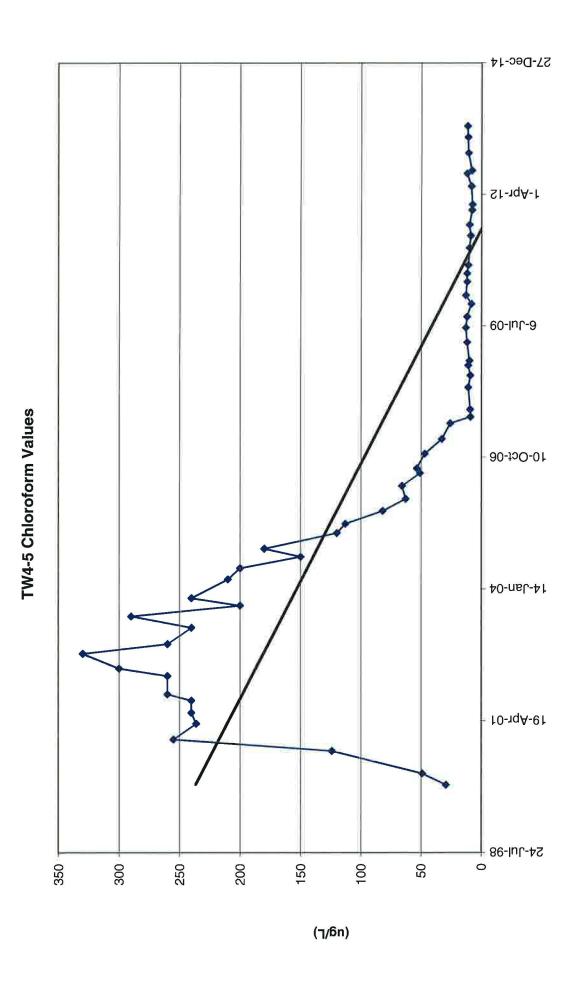
TW4-30	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
19-Jun-13	ND	ND	ND	ND	0.948	36
29-Aug-13	ND	ND	ND	ND	0.952	36.3

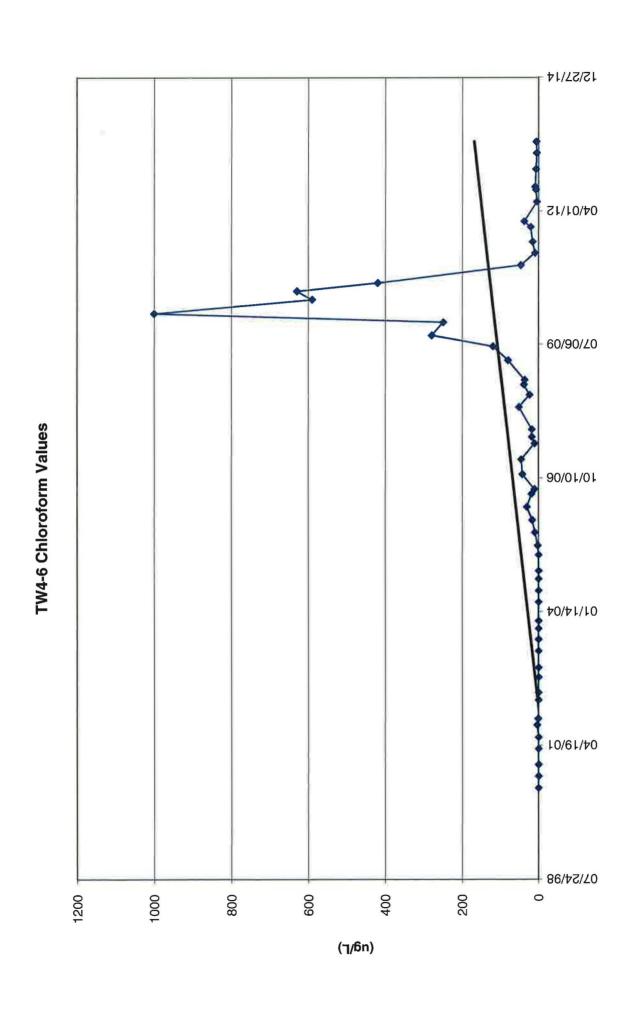
TW4-31	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
19-Jun-13	ND	ND	ND	ND	1.26	28.4
5-Sep-13	ND	ND	ND	ND	1.1	29.4


Tab L
Chloroform Concentration Trend Graphs

27-Dec-14 1-Apr-12 60-Inr-9 10-Oct-06 14-Jan-04 19-Apr-01 _____86-luL-4≤ 1000 2000 2000 0009 4000 3000 (¬/6n)

TW4-1 Chloroform Values

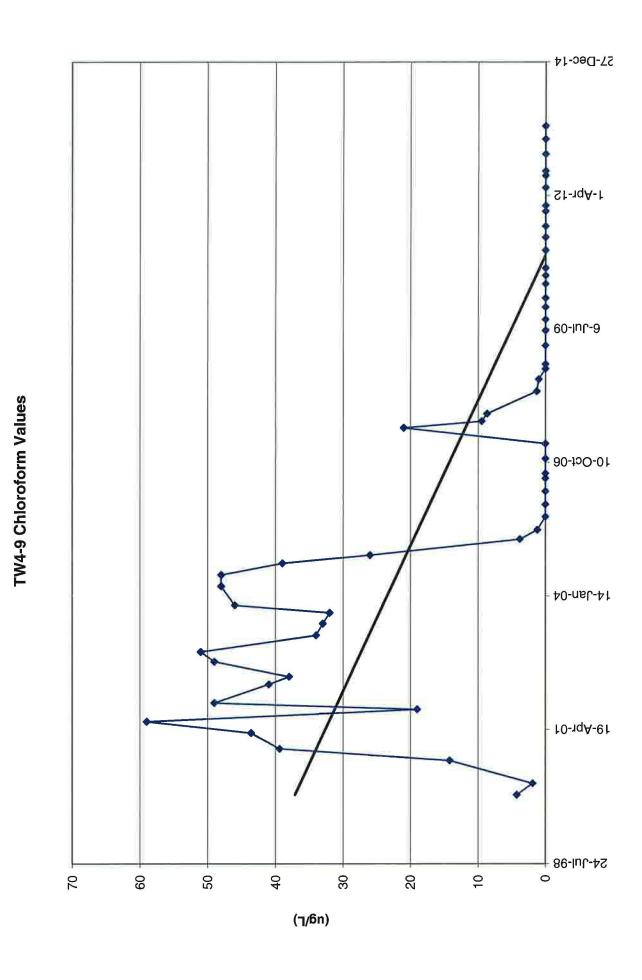

TW4-2 Chloroform Values

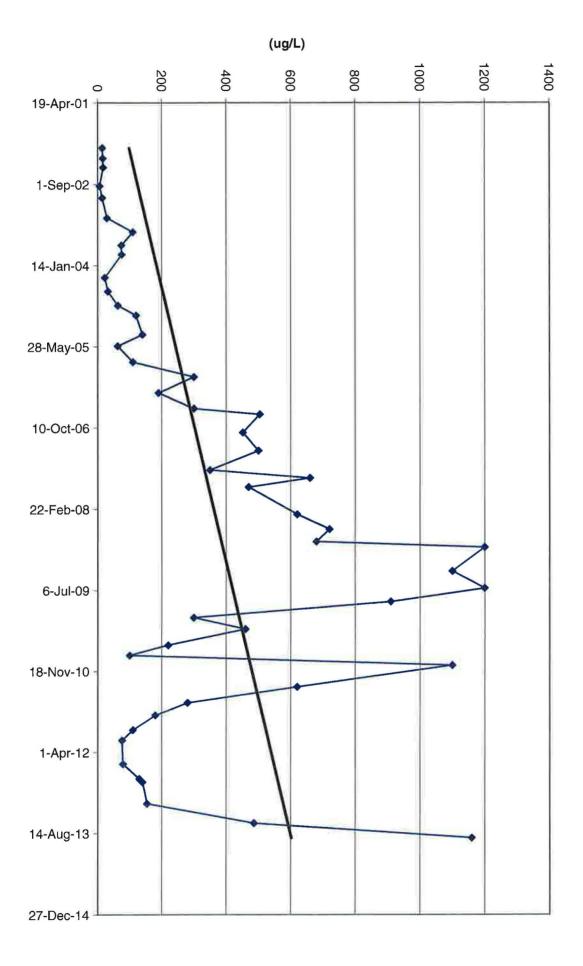


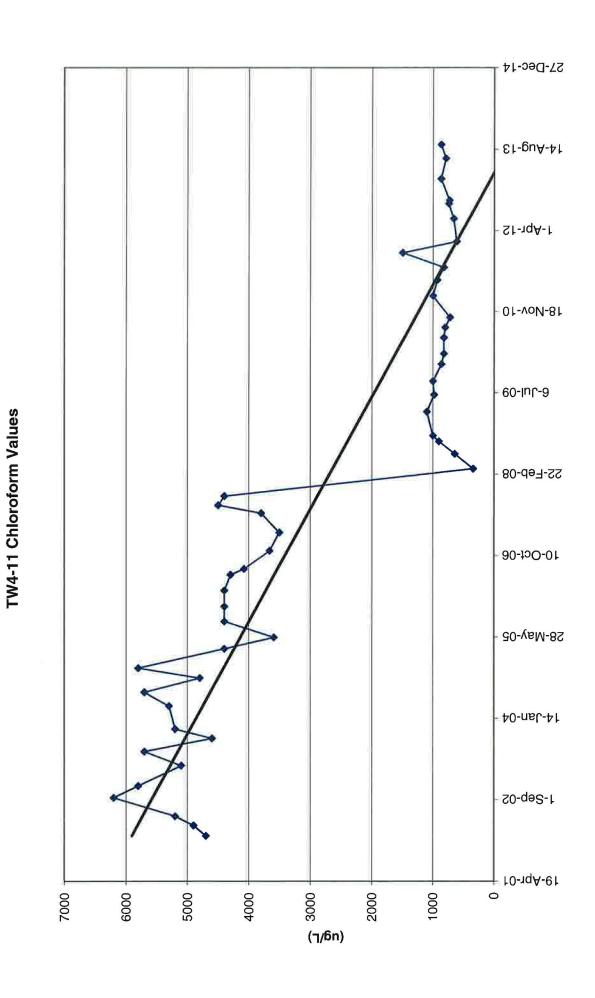
TW4-3 Has been less than the detection limit since March 28, 2003 0 0.5 0.1 6.0 0.8 0.7 9.0 0.4 0.3 0.5 0.1 0.0 (ng/L)

TW-4-3 Chloroform Values

TW4-4 Chloroform Values

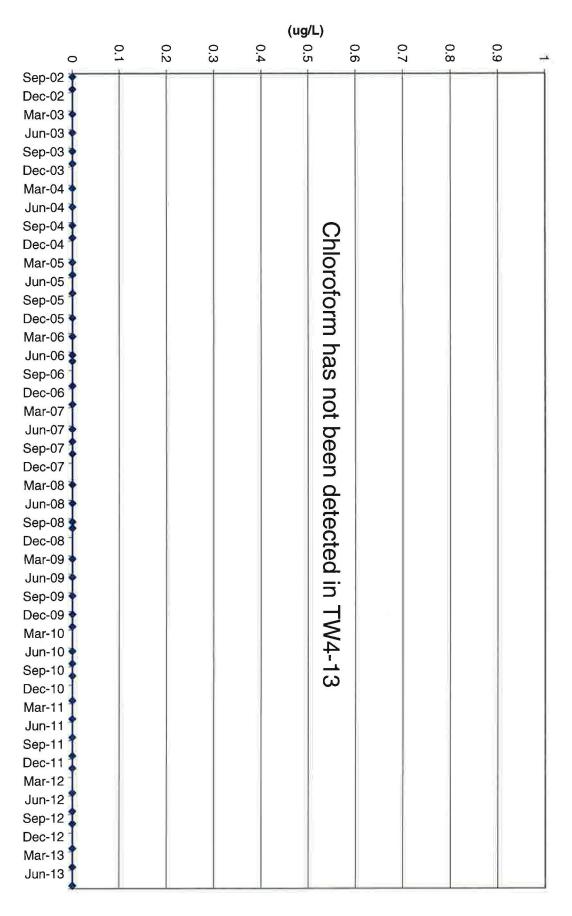





27-Dec-14 St-1qA-f 60-lnL-9 TW4-7 Chloroform Values 10-Oct-06 14-Jan-04 19-Apr-01 ____ 86-lut-4≤ 0009 2000 4000 3000 2000 (חמ/ך)

27-Dec-14 St-1qA-1 60-lnr-9 10-Oct-06 14-Jan-04 19-Apr-01 O 196-1∪L-4S 250 20 200 9 500 450 400 350 300 150 (n@/F)

TW4-8 Chloroform Values



27-Dec-14 ∳£1-guA-41 St-1qA-t 01-voN-81 60-lnL-9 22-Feb-08 10-Oct-06 28-May-05 14-Jan-04 1-Sep-02 † 10-1qA-61 1.0 (n@_\\)

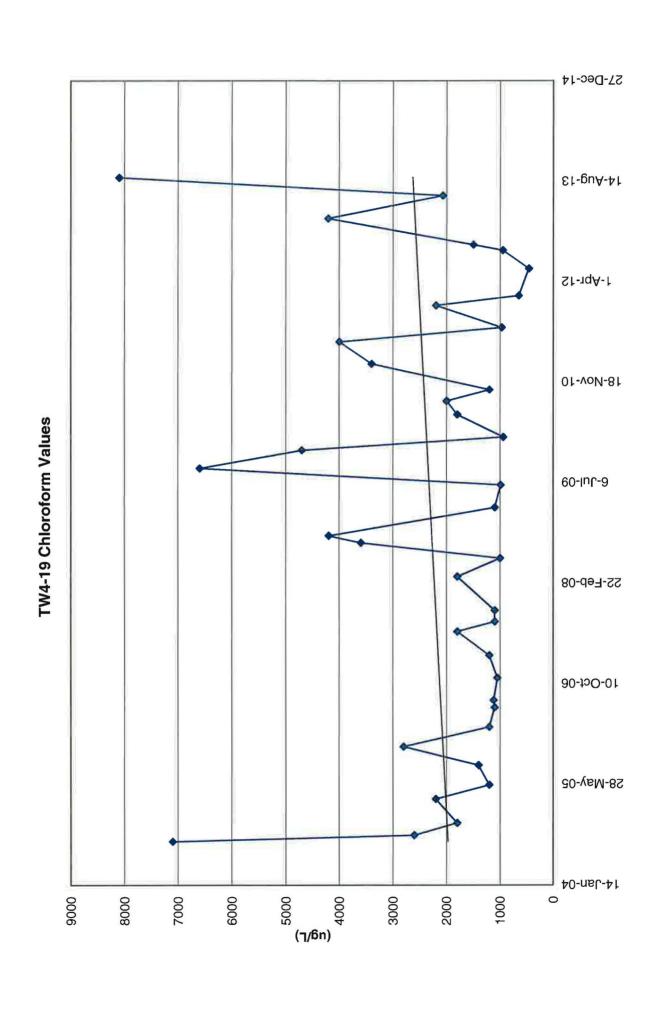
TW4-12 Chloroform Values

TW4-13 Chloroform Values

27-Dec-14 £t-guA-∔t Chloroform has not been detected in TW4-14 1-Apr-12 01-voN-81 60-Inr-9 22-Feb-08 10-Oct-06 28-May-05 ∤ 0 0 0 0 0 (ng/ך)

TW4-14 Chloroform Values

MW-26 Chloroform Values

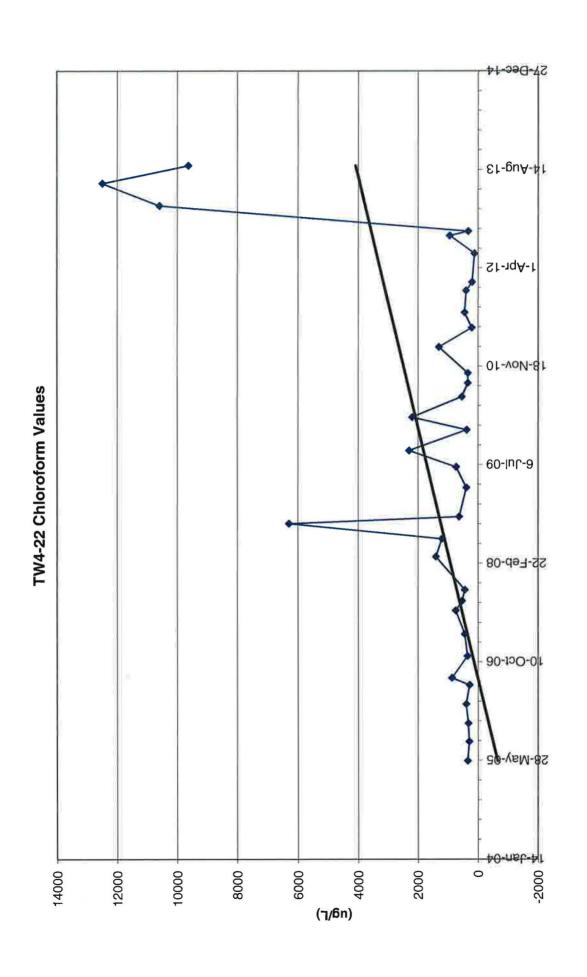

TW4-16 Chloroform Values

27-Dec-14

MW-32 Chloroform Values

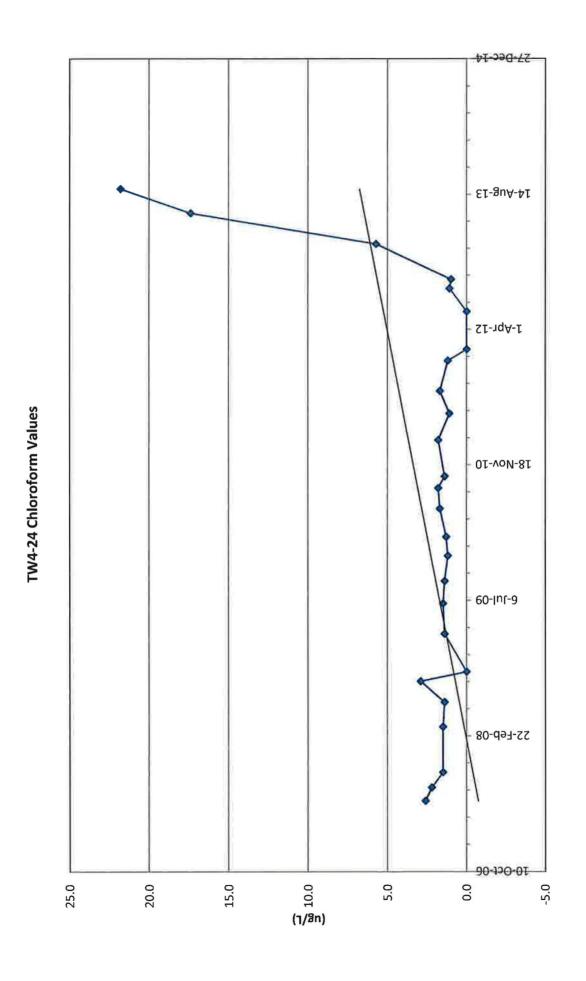
27-Dec-14 -£1-guA-⊅t 1-Apr-12 01-voN-81 60-lnr-9 22-Feb-08 10-Oct-06 28-May-05 14-Jan-04 1-Sep-02 19-Apr-01 450 400 350 300 250 200 150 100 20 (ח6n)

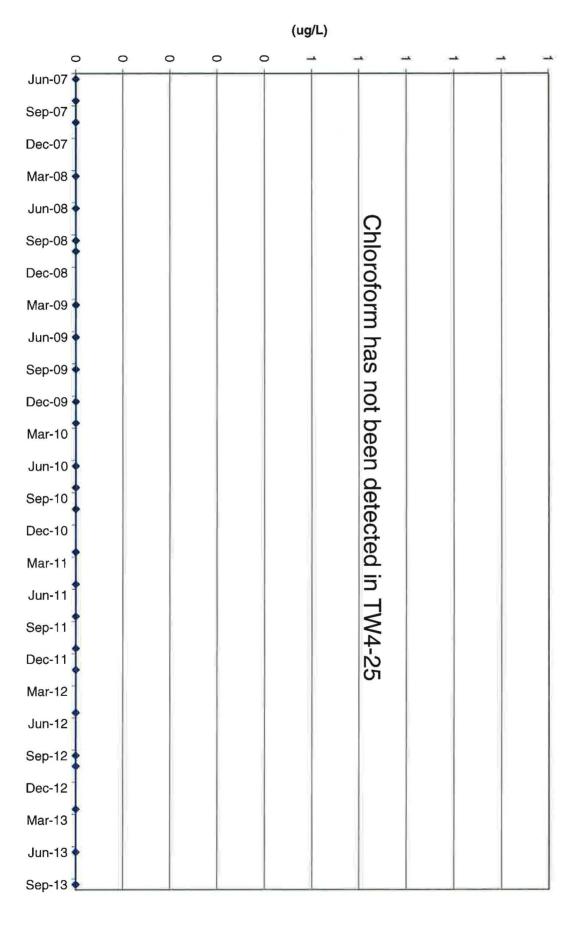
TW4-18 Chloroform Values

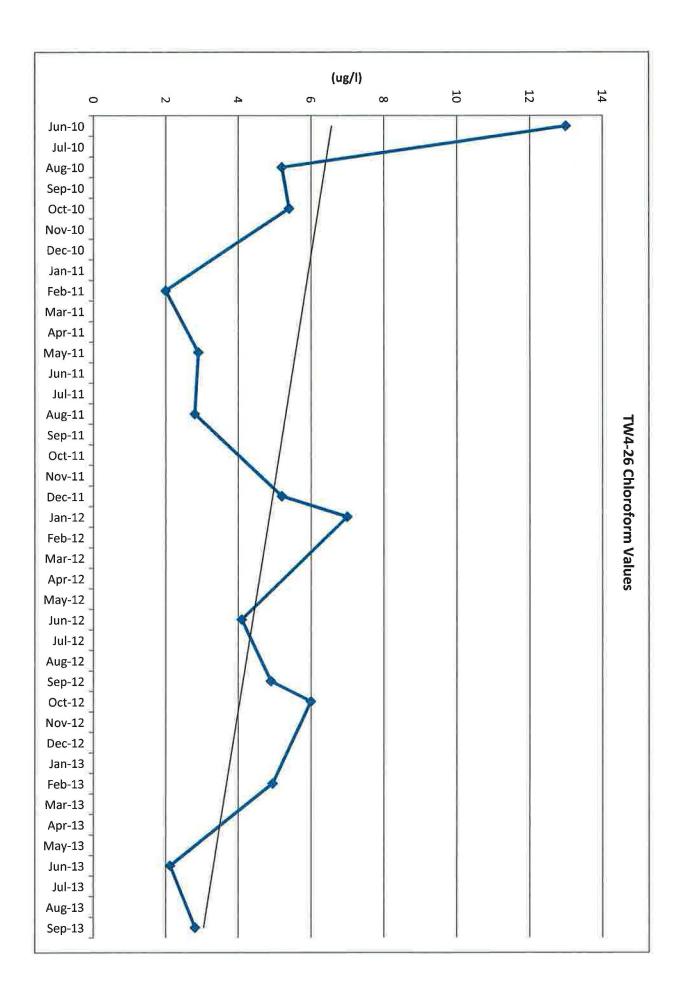


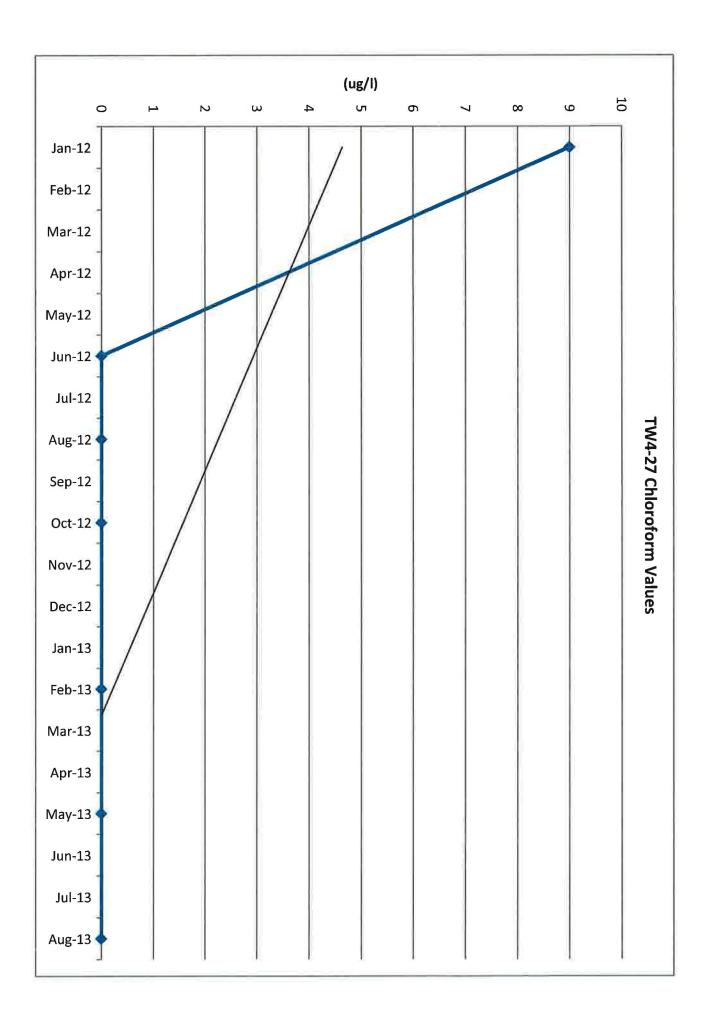
27-Dec-14 £1-guA-41 1-Apr-12 01-voN-81 60-Inr-9 22-Feb-08 40-15O-01 28-May-05 14**-**Jan-04 40000 70000 20000 10000 00009 50000 30000 (ק/6n)

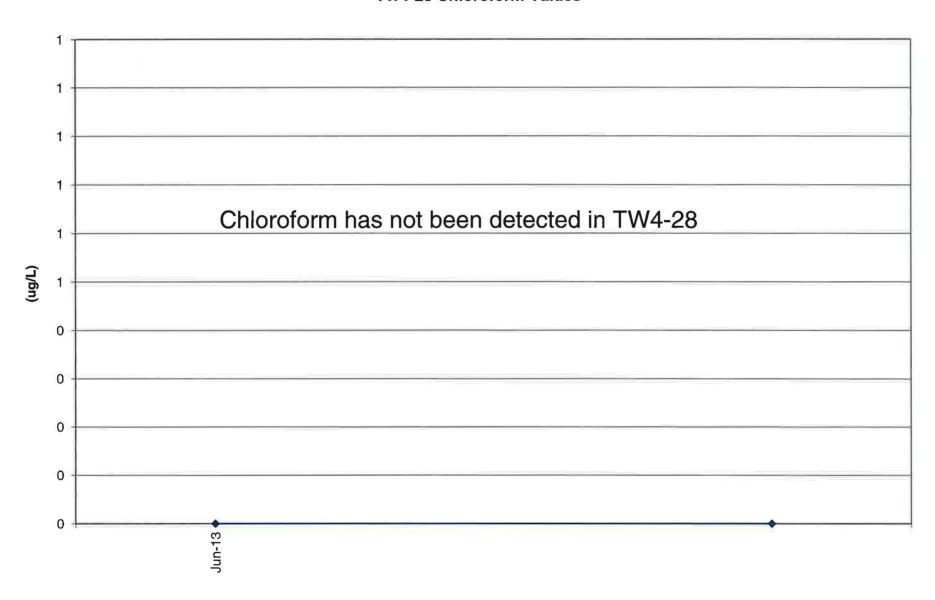
TW4-20 Chloroform Values

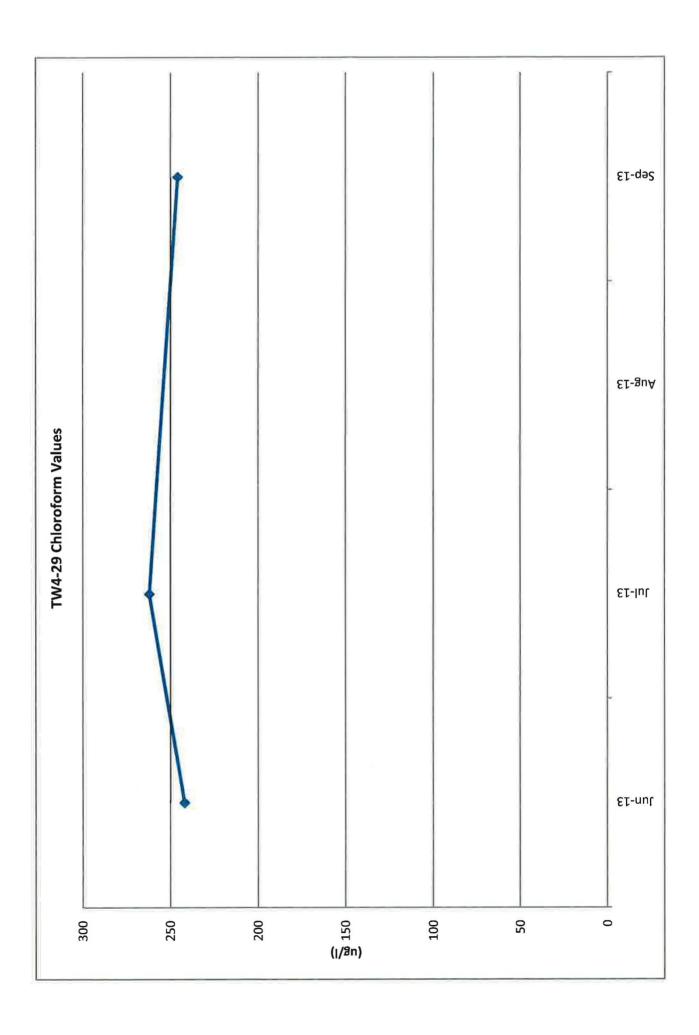

27-Dec-14 €t-guA-4t -St-1qA-t - 01-voN-81 -60-lnr-9 22-Feb-08 - 60-15O-01 28-May-05 14-Jan-04 200 320 200 100 450 400 300 250 150 20 (ק/6n)

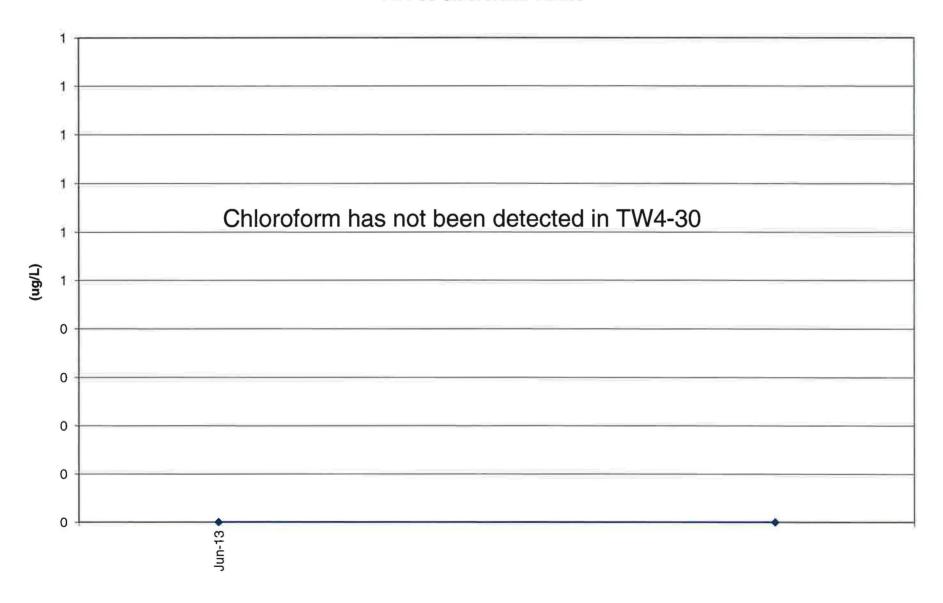

TW4-21 Chloroform Values


Mar-12 Tt-o9Q FF-q98 լ լ-սոր Mar-11 Chloroform has not been detected in TW4-23 Dec-10 Ot-qa2 ՕԼ-սոՐ Mar-10 Dec-09 60-dəS 60-unՐ Mar-09 Dec-08 Sep-08 80-սու Mar-08 Dec-07 Sep-07 ՀՕ-սոՐ 0 0 0 0 0 (¬/6n)

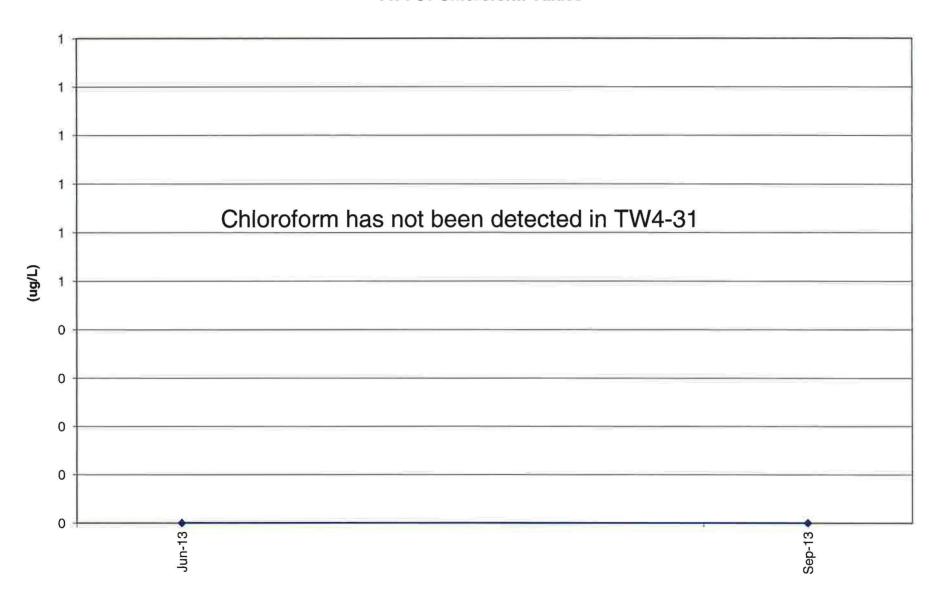

TW4-23 Chloroform Values




TW4-25 Chloroform Values



TW4-28 Chloroform Values



TW4-30 Chloroform Values

TW4-31 Chloroform Values

Tab M CSV Transmittal Letter

Kathy Weinel

From:

Kathy Weinel

Sent:

Tuesday, November 19, 2013 9:12 AM

To:

Rusty Lundberg

Cc:

'Phillip Goble'; 'Dean Henderson'; Harold Roberts; Dan Hillsten; David Frydenlund; David Turk;

Jo Ann Tischler; Jaime Massey; Frank Filas, P.E.

Subject:

Transmittal of CSV Files White Mesa Mill 2013 Q3 Chloroform Monitoring

Attachments:

1309103-EDD.csv; 1309255-EDD.csv; 1309328-EDD.csv; 1309526-EDD.csv; 1308555-

EDD.csv

Dear Mr. Lundberg,

Attached to this e-mail is an electronic copy of laboratory results for chloroform monitoring conducted at the White Mesa Mill during the third quarter of 2013, in Comma Separated Value (CSV) format.

Please contact me at 303-389-4134 if you have any questions on this transmittal.

Yours Truly

Kathy Weinel